Supplementary notes for "The Jahn-Teller effect in the presence of partial isotopic substitution: the $B^1E^{"}$ state of NH₂D and NHD₂"

Ashim Kumar Saha¹, Gautam Sarma^{a,2}, Chung-Hsin Yang^{a,3}, Bas van de Meerakker^a, David H. Parker^a and Colin M. Western⁴

These notes amplify the exposition of the Hamiltonian in the main paper.

Degeneracies in the Linear Jahn-Teller Case

The linear Jahn-Teller case specified in equation (15) to (17) in the main paper involves the following terms:

$$\hat{H}_{harm} = \frac{1}{2} \omega \left(\hat{q}_x^2 + \hat{p}_x^2 + \hat{q}_y^2 + \hat{p}_y^2 \right)$$
(1)

$$\left\langle \pm \left| \hat{H}_{\rm JT} \right| \pm \right\rangle = \pm k \omega \hat{q}_x \pm \frac{1}{2} g \omega \left(\hat{q}_x^2 - \hat{q}_y^2 \right) \tag{2}$$

$$\langle \mathbf{m} | \hat{H}_{JT} | \pm \rangle = k \omega \hat{q}_{y} - g \omega \hat{q}_{x} \hat{q}_{y}$$
 (3)

While not immediately obvious, all the eigenvalues of this Hamiltonian are doubly degenerate. This is because the difference in sign between the diagonal linear Jahn-Teller terms is not, in fact significant. If the sign of the wavefunction of levels with n_x odd for the $|-\rangle$ state is changed, then the $\Delta v = \pm 1$ selection rule for \hat{q}_x implies the sign of (the matrix elements of) $\langle -|\hat{H}_{\rm JT}|-\rangle$ is changed but the other linear terms are not. The matrix elements for the $|+\rangle$ and $|-\rangle$ states are then identical and all levels are doubly degenerate if only the linear terms are considered.

This degeneracy is also present when the Hamiltonian is reduced to C_{2v} symmetry, equations (18) to (20) in the main text:

$$\hat{H}_{harm} = \frac{1}{2}\omega_x \left(\hat{q}_x^2 + \hat{p}_x^2 \right) + \frac{1}{2}\omega_y \left(\hat{q}_y^2 + \hat{p}_y^2 \right)$$
(4)

$$\left\langle \pm \left| \hat{H}_{\rm JT} \right| \pm \right\rangle = \pm k_x \omega_x \hat{q}_x \tag{5}$$

$$\langle \mathbf{m} \hat{H}_{\mathrm{JT}} | \pm \rangle = k_{y} \omega_{y} \hat{q}_{y}$$
 (6)

The Hamiltonian matrix splits naturally into two sets (with A₂ and B₁ symmetry for the specific case considered here):

¹ Dept of Molecular and Laser Physics, Radboud University Nijmegen, IMM-FNWI, Nijmegen, The Netherlands 2 Current address: Department of Chemistry, University of Leicester, Leicester, UK

³ Current address: Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan

⁴ School of Chemistry, University of Bristol, Cantock's Close, Bristol, UK BS8 1TS

Overall Symmetry	$\left + ight angle$ electronic state	$\left - ight angle$ electronic state	
A ₂	$\left +,n_{x},n_{y}\right\rangle n_{y}$ even	$\left -,n_{x},n_{y}\right\rangle n_{y}$ odd	
B ₁	$\left +,n_{x},n_{y}\right\rangle n_{y} \mathrm{odd}$	$\left -,n_{x},n_{y}\right\rangle n_{y}$ even	

Here, n_x and n_y are the number of quanta in the x and y modes. Consideration of the \hat{H}_{JT} operators given above shows that the A₂ and B₁ matrices are identical, using the same logic as in the D_{3h} case, and so the degeneracy is not lifted.

Energy levels in the purely quadratic Jahn-Teller case

In D_{3h} symmetry the overall symmetry of states with one quantum of a degenerate mode excited is E" × E' = A₁" + A₂" + E", and three levels are indeed seen. (If only linear terms are included then the A₁" and A₂" levels remain degenerate). In addition, the selection rules for the q^2 operators of $\Delta v = 0$, ±2 means the quadratic terms give rise to effects in first order. For example, the quadratic component of $\hat{H}_{\rm JT}^{(0)} = -g\omega\hat{q}_x\hat{q}_y$ will mix otherwise degenerate components with one quantum of the degenerate mode, giving a Hamiltonian matrix of:

$$\frac{|+10\rangle |-01\rangle |+01\rangle |-10\rangle}{\langle+10| 2\omega + g\omega - g\omega} \\
\langle-01| -g\omega 2\omega + g\omega \\
\langle+01| 2\omega - g\omega - g\omega \\
\langle-01| -g\omega 2\omega - g\omega \\
\langle-10| -g\omega 2\omega - g\omega$$
(7)

where the numbers in the bras and kets are v_x and v_y . This has eigenvalues of $2\omega - g\omega$, 2ω (twice) and $2\omega + g\omega$ as expected from the symmetry argument, and indicating a first order effect giving rise to the splitting (of $g\omega$) between A_1 " and A_2 ". Symmetry requires that the degeneracy is maintained in the vibrationless level in D_{3h} .

Effective Potential

As an alternative to modelling the effects of the Jahn-Teller effect by adding terms to the vibrational Hamiltonian, it is possible to calculate an effective potential energy surface as a function of the vibrational co-ordinates. Considering only the linear terms, this is the eigenvalues of the following matrix:

$$\begin{pmatrix} y_2 \omega (q_x^2 + q_y^2) + k \omega q_x & k \omega q_y \\ k \omega q_y & y_2 \omega (q_x^2 + q_y^2) - k \omega q_x \end{pmatrix}$$
(8)

which are:

$$V(q_x, q_y) = \frac{1}{2}\omega(q_x^2 + q_y^2) \pm k\omega\sqrt{q_x^2 + q_y^2}$$
(9)

Recasting in terms of the total displacement from equilibrium, $r = \sqrt{q_x^2 + q_y^2}$ shows that the two dimensional potential only depends on the distance from the origin (at $q_x = q_y = 0$):

$$V(r) = \frac{1}{2}\omega r^2 \pm k\omega r \tag{10}$$

The minimum of this potential is where $\omega r \pm k\omega = 0$, i.e. $r_{\min} = \pm k$. This is not a single point, but rather a ring of points or "moat" around the symmetrical point at r = 0. The potential at the bottom of the moat is $V(r_{\min}) = \frac{1}{2}\omega k^2$. Tthe values given in Allen *et al*¹ imply $\frac{1}{2}\omega_3 k_3^2 = 45.1 \text{ cm}^{-1}$ and $\frac{1}{2}\omega_4 k_4^2 = 29.5 \text{ cm}^{-1}$ so it is clear that the maximum in the potential at r = 0 is far below the zero point level for both vibrations for the state considered here, so the Jahn-Teller effect is very much a dynamic, rather than a static effect. A similar calculation can be done for the quadratic term, which is known² to produce three minima at the bottom of this moat.

Given the force field analysis for NH_3 in the main text the above allows a simple static picture of the Jahn-Teller distortion to be developed. The minimum in the effective Jahn-Teller potential occurs at a displacement equal to the Jahn-Teller parameter, k, along the dimensionless normal co-ordinate, q. above. The transformation between these and the internal valence force fields is given as part of the force field analysis, and is shown in Table 1.

	<i>q</i> ₁	<i>q</i> ₂	q_3		<i>q</i> ₄	
δr ₁ /Å	0.05956	0.00000	0.08631	0.00000	-0.00384	0.00000
δr₂/Å	0.05956	0.00000	-0.04315	0.07474	0.00192	-0.00332
δr ₃ /Å	0.05956	0.00000	-0.04315	-0.07474	0.00192	0.00332
$\delta \theta_1$ /rad	0.00000	0.00000	0.01846	0.00000	0.20361	0.00000
$\delta \theta_2/rad$	0.00000	0.00000	-0.00923	0.01598	-0.10180	0.17633
δθ₃/rad	0.00000	0.00000	-0.00923	-0.01598	-0.10180	-0.17633
δφ/rad	0.00000	0.30688	0.00000	0.00000	0.00000	0.00000

Table 1 Transformation matrix, d^{int} between dimensionless normal coordinates and internal coordinates for the B^1E'' state of NH₃

Given a Jahn-Teller parameter for v_3 of $k_3 = 0.165$ the above implies the minimum energy geometry corresponds to a displacement of 0.165 along the dimensionless normal coordinate. This does not correspond to a single geometry, but if we just consider one of the components of q_3 and ignore the small mixing between stretching and bending, the table

above allows this to be converted to a geometry where one bond is lengthened by ~0.014 Å and the other two shortened by half that. Similarly the minimum along one of the v_4 modes occurs when one angle is increased by 2.2° and the other two decreased by half that.

Symmetry Coordinates

The transformation between dimensionless normal coordinates and symmetry coordinates is available from the force field analysis:

$$S_1 = 0.103 q_1$$
 (11)

$$S_2 = 0.307 q_1$$
 (12)

$$S_{3x} = 0.106 q_{3x} - 0.005 q_{4x} \text{ and } S_{3y} = 0.106 q_{3y} - 0.005 q_{4y}$$
(13)

$$S_{4x} = 0.023 q_{3x} - 0.249 q_{4x}$$
 and $S_{4y} = 0.023 q_{3y} - 0.249 q_{4y}$ (14)

The numbers above are in Å or degrees. The conversion factor between S_1 and q_1 in fact has the simple form $\sqrt{h\sqrt{k_{\text{stretch}}m_H}}$ (in SI units) but the others will be more complicated. In particular the mixing between the S_3 and S_4 degenerate modes will depend on the values for k_{stretch} and k_{bend} , though we can see from the figures above that the mixing is small.

Quadratic Jahn-Teller terms in internal coordinates

To see the form of the quadratic Jahn-Teller terms, equation (34) in the main text, in internal co-ordinates expand out the individual terms:

$$S_{3x}^{2} - S_{3y}^{2} = \frac{1}{6} \left(4\delta r_{1}^{2} + \delta r_{2}^{2} + \delta r_{3}^{2} - 4\delta r_{1}\delta r_{2} - 4\delta r_{1}\delta r_{3} + 2\delta r_{2}\delta r_{3} \right) - \frac{1}{2} \left(\delta r_{2}^{2} + \delta r_{3}^{2} - 2\delta r_{2}\delta r_{3} \right)$$
$$= \frac{1}{6} \left(4\delta r_{1}^{2} - 2\delta r_{2}^{2} - 2\delta r_{3}^{2} - 4\delta r_{1}\delta r_{2} - 4\delta r_{1}\delta r_{3} + 8\delta r_{2}\delta r_{3} \right)$$
(15)

In terms of internal coordinates this corresponds to a relatively complicated pattern in the force constant matrix:

$$\frac{\delta r_{1}}{\delta r_{1}} \quad \frac{\delta r_{2}}{4g'} \quad \frac{\delta r_{3}}{-2g'} \quad \frac{\delta r_{3}}{-2g'} \quad (16)$$

$$\frac{\delta r_{2}}{\delta r_{3}} \quad -2g' \quad 4g' \quad -2g'$$

This requires $g' = 2/3 g_{JT3}$. The term off-diagonal in electronic state becomes:

$$S_{3x}S_{3y} = \frac{1}{2\sqrt{3}} \left(2\delta r_1 - \delta r_2 - \delta r_3 \right) \left(\delta r_2 - \delta r_3 \right) = \frac{1}{2\sqrt{3}} \left(-\delta r_2^2 + \delta r_3^2 + 2\delta r_1 \delta r_2 - 2\delta r_1 \delta r_3 \right)$$
(17)

which has a slightly simpler form in internal coordinates:

$$\begin{pmatrix} 0 & g'' & -g'' \\ g'' & -g'' & 0 \\ -g'' & 0 & g'' \end{pmatrix}$$
(18)

where $g'' = -2\sqrt{3}g_{JT3}$.

Fit to determine the Jahn-Teller parameters for the B¹E" state of NH₃

To determine the required parameters a fit was performed to the data shown in Table 2 from Allen et al⁴. Note that the $v_4 > 0$ energies given above came from levels with one quantum of v_2 , as a more complete set of observed levels is available, and the data suggests coupling between modes is small.

	Obs	Obs-Calc
0 ⁰ E"	0.0	-5.7
21 E'	898.2	0.0
4 ¹ E"	1506.0	11.3
4² E"	2611.0	6.2
4² E"	2776.0	-12.0
3 ¹ A ₂ "	2770.7	0.1
31 A ₁ "	3229.2	0.1
31 E"	3401.0	0.0

Table 2 Observed and calculated Vibrational Levels for the B¹E" state of NH₃

Normal coordinates for the B¹E" state of NH₂D

It is instructive to look at how the normal coordinates change for NH_2D and ND_2H ; see, for example, the transformation between internal and normal coordinates for NH_2D given in Table 3.

5

		q_1	<i>q</i> ₂	<i>q</i> _{3x}	q _{3y}	q_{4x}	q_{4y}
		N-H	umbrella	N-D	N-H	HNH	HNH
		symmetric		stretch	asymmetric	bend	wag
		stretch			stretch		
δ <i>r</i> ₁	N-D	-0.01175	0.00000	0.09033	0.00000	-0.00737	0.00000
δr ₂	N-H	0.07462	0.00000	0.00736	0.07623	0.00135	-0.00229
δr ₃	N-H	0.07462	0.00000	0.00736	-0.07623	0.00135	0.00229
δθ1	H-N-H	-0.01252	0.00000	0.02805	0.00000	0.21828	0.00000
δθ2	H-N-D	0.00626	0.00000	-0.01403	0.01429	-0.10914	0.17394
δθ3	D-N-H	0.00626	0.00000	-0.01403	-0.01429	-0.10914	-0.17394
δφ		0.00000	0.29672	0.00000	0.00000	0.00000	0.00000

Table 3 Transformation between dimensionless normal coordinates and Internal coordinates for the B^1E'' state of NH_2D

Note that the degenerate modes separate naturally into N-H and N-D motions. The choice of symmetry coordinates made in the main text means that we can easily correlate modes between the different species.

- 1. J. M. Allen, M. N. R. Ashfold, R. J. Stickland and C. M. Western, *Mol. Phys.*, 1991, **74**, 49-60.
- 2. T. A. Barckholtz and T. A. Miller, *Int. Rev. Phys. Chem.*, 1988, **17**, 435-524.