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Supplementary notes for “The Jahn-Teller effect in the presence of partial isotopic 
substitution: the B̃1E" state of NH2D and NHD2”
Ashim Kumar Saha1, Gautam Sarmaa,2, Chung-Hsin Yanga,3, Bas van de Meerakkera, David H. 
Parkera and Colin M. Western4

These notes amplify the exposition of the Hamiltonian in the main paper.

Degeneracies in the Linear Jahn-Teller Case
The linear Jahn-Teller case specified in equation (15) to (17) in the main paper involves the 
following terms:
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While not immediately obvious, all the eigenvalues of this Hamiltonian are doubly 
degenerate. This is because the difference in sign between the diagonal linear Jahn-Teller 
terms is not, in fact significant. If the sign of the wavefunction of levels with nx odd for the 

 state is changed, then the Δv = ±1 selection rule for  implies the sign of (the matrix  xq̂
elements of) is changed but the other linear terms are not. The matrix elements for  JTĤ
the  and  states are then identical and all levels are doubly degenerate if only the linear  

terms are considered.

This degeneracy is also present when the Hamiltonian is reduced to C2v symmetry, equations 
(18) to (20) in the main text:
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The Hamiltonian matrix splits naturally into two sets (with A2 and B1 symmetry for the specific 
case considered here):
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Overall Symmetry electronic state electronic state

A2 ny evenyx nn ,, ny oddyx nn ,,

B1 ny oddyx nn ,, ny evenyx nn ,,

Here, nx and ny are the number of quanta in the x and y modes. Consideration of the  JTĤ
operators given above shows that the A2 and B1 matrices are identical, using the same logic 
as in the D3h case, and so the degeneracy is not lifted.

Energy levels in the purely quadratic Jahn-Teller case
In D3h symmetry the overall symmetry of states with one quantum of a degenerate mode 
excited is E" × E' = A1" + A2" + E", and three levels are indeed seen. (If only linear terms are 
included then the A1" and A2" levels remain degenerate). In addition, the selection rules for 
the q2 operators of Δv = 0, ±2 means the quadratic terms give rise to effects in first order. For 
example, the quadratic component of will mix otherwise degenerate yxqqgH ˆˆˆ (o)

JT 
components with one quantum of the degenerate mode, giving a Hamiltonian matrix of:
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where the numbers in the bras and kets are vx and vy. This has eigenvalues of 2ω – gω, 2ω 
(twice) and 2ω + gω as expected from the symmetry argument, and indicating a first order 
effect giving rise to the splitting (of gω) between A1" and A2". Symmetry requires that the 
degeneracy is maintained in the vibrationless level in D3h.

Effective Potential
As an alternative to modelling the effects of the Jahn-Teller effect by adding terms to the 
vibrational Hamiltonian, it is possible to calculate an effective potential energy surface as a 
function of the vibrational co-ordinates. Considering only the linear terms, this is the 
eigenvalues of the following matrix:
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which are:
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Recasting in terms of the total displacement from equilibrium, shows that the 22
yx qqr 

two dimensional potential only depends on the distance from the origin (at qx = qy = 0):
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The minimum of this potential is where , i.e. . This is not a single point, 0 kr kr min

but rather a ring of points or “moat” around the symmetrical point at r = 0. The potential at 
the bottom of the moat is V(rmin) = ½ωk2. Tthe values given in Allen et al1 imply ½ω3k3

2 = 
45.1 cm−1 and ½ω4k4

2 = 29.5 cm−1 so it is clear that the maximum in the potential at r = 0 is far 
below the zero point level for both vibrations for the state considered here, so the Jahn-Teller 
effect is very much a dynamic, rather than a static effect. A similar calculation can be done for 
the quadratic term, which is known2 to produce three minima at the bottom of this moat.

Given the force field analysis for NH3 in the main text the above allows a simple static 
picture of the Jahn-Teller distortion to be developed. The minimum in the effective Jahn-
Teller potential occurs at a displacement equal to the Jahn-Teller parameter, k, along the 
dimensionless normal co-ordinate, q. above. The transformation between these and the 
internal valence force fields is given as part of the force field analysis, and is shown in Table 
1.

Table 1 Transformation matrix, dint between dimensionless normal coordinates and 
internal coordinates for the B̃1E" state of NH3

q1 q2 q3 q4

δr1/Å 0.05956 0.00000 0.08631 0.00000 -0.00384 0.00000

δr2/Å 0.05956 0.00000 -0.04315 0.07474 0.00192 -0.00332

δr3/Å 0.05956 0.00000 -0.04315 -0.07474 0.00192 0.00332

δθ1/rad 0.00000 0.00000 0.01846 0.00000 0.20361 0.00000

δθ2/rad 0.00000 0.00000 -0.00923 0.01598 -0.10180 0.17633

δθ3/rad 0.00000 0.00000 -0.00923 -0.01598 -0.10180 -0.17633

δφ/rad 0.00000 0.30688 0.00000 0.00000 0.00000 0.00000

Given a Jahn-Teller parameter for ν3 of k3 = 0.165 the above implies the minimum energy 
geometry corresponds to a displacement of 0.165 along the dimensionless normal 
coordinate. This does not correspond to a single geometry, but if we just consider one of the 
components of q3 and ignore the small mixing between stretching and bending, the table 
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above allows this to be converted to a geometry where one bond is lengthened by ~0.014 Å 
and the other two shortened by half that. Similarly the minimum along one of the ν4 modes 
occurs when one angle is increased by 2.2° and the other two decreased by half that.

Symmetry Coordinates
The transformation between dimensionless normal coordinates and symmetry coordinates is 
available from the force field analysis:

S1 =  0.103 q1 (11)

S2 = 0.307 q1 (12)

S3x = 0.106 q3x – 0.005 q4x and S3y = 0.106 q3y – 0.005 q4y (13)

S4x = 0.023 q3x – 0.249 q4x and S4y = 0.023 q3y – 0.249 q4y (14)

The numbers above are in Å or degrees. The conversion factor between S1 and q1 in fact has 
the simple form  (in SI units) but the others will be more complicated. In Hmkstretchh
particular the mixing between the S3 and S4 degenerate modes will depend on the values for 
kstretch and kbend¸ though we can see from the figures above that the mixing is small.

Quadratic Jahn-Teller terms in internal coordinates
To see the form of the quadratic Jahn-Teller terms, equation (34) in the main text, in internal 
co-ordinates expand out the individual terms:
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In terms of internal coordinates this corresponds to a relatively complicated pattern in the 
force constant matrix:
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This requires g' = 2/3 gJT3. The term off-diagonal in electronic state becomes:
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which has a slightly simpler form in internal coordinates:
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Fit to determine the Jahn-Teller parameters for the B̃1E" state of NH3

To determine the required parameters a fit was performed to the data shown in Table 2 from 
Allen et al4. Note that the v4 > 0 energies given above came from levels with one quantum of 
v2, as a more complete set of observed levels is available, and the data suggests coupling 
between modes is small.

Table 2 Observed and calculated Vibrational Levels for the B̃1E" state of NH3

Obs Obs-Calc

00 E" 0.0 –5.7

21 E' 898.2 0.0

41 E" 1506.0 11.3

42 E" 2611.0 6.2

42 E" 2776.0 –12.0

31 A2" 2770.7 0.1

31 A1" 3229.2 0.1

31 E" 3401.0 0.0

Normal coordinates for the B̃1E" state of NH2D
It is instructive to look at how the normal coordinates change for NH2D and ND2H; see, for 
example, the transformation between internal and normal coordinates for NH2D given in 
Table 3.
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Table 3 Transformation between dimensionless normal coordinates and Internal 
coordinates for the B̃1E" state of NH2D

q1 q2 q3x q3y q4x q4y

N-H

symmetric

stretch

umbrella N-D

stretch

N-H

asymmetric

stretch

HNH

bend

HNH

wag

δr1 N-D -0.01175 0.00000 0.09033 0.00000 -0.00737 0.00000

δr2 N-H 0.07462 0.00000 0.00736 0.07623 0.00135 -0.00229

δr3 N-H 0.07462 0.00000 0.00736 -0.07623 0.00135 0.00229

δθ1 H-N-H -0.01252 0.00000 0.02805 0.00000 0.21828 0.00000

δθ2 H-N-D 0.00626 0.00000 -0.01403 0.01429 -0.10914 0.17394

δθ3 D-N-H 0.00626 0.00000 -0.01403 -0.01429 -0.10914 -0.17394

δφ 0.00000 0.29672 0.00000 0.00000 0.00000 0.00000

Note that the degenerate modes separate naturally into N-H and N-D motions. The choice of 
symmetry coordinates made in the main text means that we can easily correlate modes 
between the different species.
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