Supplementary notes for "The Jahn-Teller effect in the presence of partial isotopic substitution: the $\mathbf{B}^{1} \mathrm{E}$ " state of $\mathrm{NH}_{2} \mathrm{D}$ and $\mathrm{NHD}_{2}{ }^{\prime \prime}$

Ashim Kumar Saha ${ }^{1}$, Gautam Sarma ${ }^{\text {a,2 }}$, Chung-Hsin Yang ${ }^{\text {a,3 }}$, Bas van de Meerakkera, David H. Parker ${ }^{\text {a and Colin M. Western }}{ }^{4}$

These notes amplify the exposition of the Hamiltonian in the main paper.

Degeneracies in the Linear Jahn-Teller Case

The linear Jahn-Teller case specified in equation (15) to (17) in the main paper involves the following terms:

$$
\begin{align*}
& \hat{H}_{\mathrm{harm}}=1 / 2 \omega\left(\hat{q}_{x}^{2}+\hat{p}_{x}^{2}+\hat{q}_{y}^{2}+\hat{p}_{y}^{2}\right) \tag{1}\\
& \langle \pm| \hat{H}_{\mathrm{JT}}| \pm\rangle= \pm k \omega \hat{q}_{x} \pm 1 / 2 g \omega\left(\hat{q}_{x}^{2}-\hat{q}_{y}^{2}\right) \tag{2}\\
& \langle\mathrm{m}| \hat{H}_{\mathrm{JT}}| \pm\rangle=k \omega \hat{q}_{y}-g \omega \hat{q}_{x} \hat{q}_{y} \tag{3}
\end{align*}
$$

While not immediately obvious, all the eigenvalues of this Hamiltonian are doubly degenerate. This is because the difference in sign between the diagonal linear Jahn-Teller terms is not, in fact significant. If the sign of the wavefunction of levels with n_{x} odd for the
 elements of) $\langle-| \hat{H}_{\text {JT }}|-\rangle$ is changed but the other linear terms are not. The matrix elements for the $|+\rangle$ and $|-\rangle$ states are then identical and all levels are doubly degenerate if only the linear terms are considered.

This degeneracy is also present when the Hamiltonian is reduced to $\mathrm{C}_{2 \mathrm{v}}$ symmetry, equations (18) to (20) in the main text:

$$
\begin{align*}
& \hat{H}_{\text {harm }}=1 / 2 \omega_{x}\left(\hat{q}_{x}^{2}+\hat{p}_{x}^{2}\right)+1 / 2 \omega_{y}\left(\hat{q}_{y}^{2}+\hat{p}_{y}^{2}\right) \tag{4}\\
& \langle \pm| \hat{H}_{\text {JT }}| \pm\rangle= \pm k_{x} \omega_{x} \hat{q}_{x} \tag{5}\\
& \langle\mathrm{~m}| \hat{H}_{\mathrm{JT}}| \pm\rangle=k_{y} \omega_{y} \hat{q}_{y} \tag{6}
\end{align*}
$$

The Hamiltonian matrix splits naturally into two sets (with A_{2} and B_{1} symmetry for the specific case considered here):

[^0]

Here, n_{x} and n_{y} are the number of quanta in the x and y modes. Consideration of the $\hat{H}_{J T}$ operators given above shows that the A_{2} and B_{1} matrices are identical, using the same logic as in the $D_{3 h}$ case, and so the degeneracy is not lifted.

Energy levels in the purely quadratic Jahn-Teller case

In $D_{3 h}$ symmetry the overall symmetry of states with one quantum of a degenerate mode excited is $E^{\prime \prime} \times E^{\prime}=A_{1}{ }^{\prime \prime}+A_{2}{ }^{\prime \prime}+E^{\prime \prime}$, and three levels are indeed seen. (If only linear terms are included then the A_{1} " and A_{2} " levels remain degenerate). In addition, the selection rules for the q^{2} operators of $\Delta v=0, \pm 2$ means the quadratic terms give rise to effects in first order. For example, the quadratic component of $\hat{H}_{\mathrm{JT}}^{(0)}=-g \omega \hat{q}_{x} \hat{q}_{y}$ will mix otherwise degenerate components with one quantum of the degenerate mode, giving a Hamiltonian matrix of:

	$\|+10\rangle$	$\|-01\rangle$	$\|+01\rangle$	$\|-10\rangle$
$\langle+10\|$	$2 \omega+g \omega$	$-g \omega$		
$\langle-01\|$	$-g \omega$	$2 \omega+g \omega$		
$\langle+01\|$			$2 \omega-g \omega$	$-g \omega$
$\langle-10\|$			$-g \omega$	$2 \omega-g \omega$

where the numbers in the bras and kets are v_{x} and v_{y}. This has eigenvalues of $2 \omega-g \omega, 2 \omega$ (twice) and $2 \omega+g \omega$ as expected from the symmetry argument, and indicating a first order effect giving rise to the splitting (of $g \omega$) between A_{1} " and A_{2} ". Symmetry requires that the degeneracy is maintained in the vibrationless level in $D_{3 n}$.

Effective Potential

As an alternative to modelling the effects of the Jahn-Teller effect by adding terms to the vibrational Hamiltonian, it is possible to calculate an effective potential energy surface as a function of the vibrational co-ordinates. Considering only the linear terms, this is the eigenvalues of the following matrix:

$$
\left(\begin{array}{cc}
1 / 2 \omega\left(q_{x}^{2}+q_{y}^{2}\right)+k \omega q_{x} & k \omega q_{v} \tag{8}\\
k \omega q_{y} & 1 / 2 \omega\left(q_{x}^{2}+q_{y}^{2}\right)-k \omega q_{x}
\end{array}\right)
$$

which are:

$$
\begin{equation*}
V\left(q_{x}, q_{y}\right)=1 / 2 \omega\left(q_{x}^{2}+q_{y}^{2}\right) \pm k \omega \sqrt{q_{x}^{2}+q_{y}^{2}} \tag{9}
\end{equation*}
$$

Recasting in terms of the total displacement from equilibrium, $r=\sqrt{q_{x}^{2}+q_{y}^{2}}$ shows that the two dimensional potential only depends on the distance from the origin (at $q_{\mathrm{x}}=q_{y}=0$):

$$
\begin{equation*}
V(r)=1 / 2 \omega r^{2} \pm k \omega r \tag{10}
\end{equation*}
$$

The minimum of this potential is where $\omega r \pm k \omega=0$, i.e. $r_{\text {min }}= \pm k$. This is not a single point, but rather a ring of points or "moat" around the symmetrical point at $r=0$. The potential at the bottom of the moat is $V\left(r_{\text {min }}\right)=1 / 2 \omega k^{2}$. The values given in Allen et al imply $1 / 2 \omega_{3} k_{3}{ }^{2}=$ $45.1 \mathrm{~cm}^{-1}$ and $1 / 2 \omega_{4} k_{4}{ }^{2}=29.5 \mathrm{~cm}^{-1}$ so it is clear that the maximum in the potential at $r=0$ is far below the zero point level for both vibrations for the state considered here, so the Jahn-Teller effect is very much a dynamic, rather than a static effect. A similar calculation can be done for the quadratic term, which is known ${ }^{2}$ to produce three minima at the bottom of this moat.

Given the force field analysis for NH_{3} in the main text the above allows a simple static picture of the Jahn-Teller distortion to be developed. The minimum in the effective JahnTeller potential occurs at a displacement equal to the Jahn-Teller parameter, k, along the dimensionless normal co-ordinate, q. above. The transformation between these and the internal valence force fields is given as part of the force field analysis, and is shown in Table 1.

Table 1 Transformation matrix, $\mathrm{d}^{\text {int }}$ between dimensionless normal coordinates and internal coordinates for the $\mathrm{B}^{1} \mathrm{E}^{\prime \prime}$ state of NH_{3}

	q_{1}	q_{2}	q_{3}		q_{4}	
$\delta r_{1} / \AA$	0.05956	0.00000	0.08631	0.00000	-0.00384	0.00000
$\delta r_{2} / \AA$	0.05956	0.00000	-0.04315	0.07474	0.00192	-0.00332
$\delta r_{3} / \AA$	0.05956	0.00000	-0.04315	-0.07474	0.00192	0.00332
$\delta \theta_{1} / \mathrm{rad}$	0.00000	0.00000	0.01846	0.00000	0.20361	0.00000
$\delta \theta_{2} / \mathrm{rad}$	0.00000	0.00000	-0.00923	0.01598	-0.10180	0.17633
$\delta \theta_{3} / \mathrm{rad}$	0.00000	0.00000	-0.00923	-0.01598	-0.10180	-0.17633
$\delta \phi / \mathrm{rad}$	0.00000	0.30688	0.00000	0.00000	0.00000	0.00000

Given a Jahn-Teller parameter for v_{3} of $k_{3}=0.165$ the above implies the minimum energy geometry corresponds to a displacement of 0.165 along the dimensionless normal coordinate. This does not correspond to a single geometry, but if we just consider one of the components of q_{3} and ignore the small mixing between stretching and bending, the table
above allows this to be converted to a geometry where one bond is lengthened by $\sim 0.014 \AA$ and the other two shortened by half that. Similarly the minimum along one of the v_{4} modes occurs when one angle is increased by 2.2° and the other two decreased by half that.

Symmetry Coordinates

The transformation between dimensionless normal coordinates and symmetry coordinates is available from the force field analysis:

$$
\begin{align*}
& S_{1}=0.103 q_{1} \tag{11}\\
& S_{2}=0.307 q_{1} \tag{12}\\
& S_{3 x}=0.106 q_{3 x}-0.005 q_{4 x} \text { and } S_{3 y}=0.106 q_{3 y}-0.005 q_{4 y} \tag{13}\\
& S_{4 x}=0.023 q_{3 x}-0.249 q_{4 x} \text { and } S_{4 y}=0.023 q_{3 y}-0.249 q_{4 y} \tag{14}
\end{align*}
$$

The numbers above are in \AA A or degrees. The conversion factor between S_{1} and q_{1} in fact has the simple form $\sqrt{\mathrm{h} \sqrt{k_{\text {stretch }} m_{H}}}$ (in SI units) but the others will be more complicated. In particular the mixing between the S_{3} and S_{4} degenerate modes will depend on the values for $k_{\text {stretch }}$ and $k_{\text {bend, }}$ though we can see from the figures above that the mixing is small.

Quadratic Jahn-Teller terms in internal coordinates

To see the form of the quadratic Jahn-Teller terms, equation (34) in the main text, in internal co-ordinates expand out the individual terms:

$$
\begin{align*}
S_{3 x}^{2}-S_{3 y}^{2} & =1 / 6\left(4 \delta r_{1}^{2}+\delta r_{2}^{2}+\delta r_{3}^{2}-4 \delta r_{1} \delta r_{2}-4 \delta r_{1} \delta r_{3}+2 \delta r_{2} \delta r_{3}\right)-1 / 2\left(\delta r_{2}^{2}+\delta r_{3}^{2}-2 \delta r_{2} \delta r_{3}\right) \\
& =1 / 6\left(4 \delta r_{1}^{2}-2 \delta r_{2}^{2}-2 \delta r_{3}^{2}-4 \delta r_{1} \delta r_{2}-4 \delta r_{1} \delta r_{3}+8 \delta r_{2} \delta r_{3}\right) \tag{15}
\end{align*}
$$

In terms of internal coordinates this corresponds to a relatively complicated pattern in the force constant matrix:

	δr_{1}	δr_{2}	δr_{3}
δr_{1}	$4 g^{\prime}$	$-2 g^{\prime}$	$-2 g^{\prime}$
δr_{2}	$-2 g^{\prime}$	$-2 g^{\prime}$	$4 g^{\prime}$
δr_{3}	$-2 g^{\prime}$	$4 g^{\prime}$	$-2 g^{\prime}$

This requires $g^{\prime}=2 / 3 g_{\text {лтз }}$. The term off-diagonal in electronic state becomes:

$$
\begin{equation*}
S_{3 x} S_{3 y}=1 / 2 \sqrt{3}\left(2 \delta r_{1}-\delta r_{2}-\delta r_{3}\right)\left(\delta r_{2}-\delta r_{3}\right)=1 / 2 \sqrt{3}\left(-\delta r_{2}^{2}+\delta r_{3}^{2}+2 \delta r_{1} \delta r_{2}-2 \delta r_{1} \delta r_{3}\right) \tag{17}
\end{equation*}
$$

which has a slightly simpler form in internal coordinates:

$$
\left(\begin{array}{rrr}
0 & g^{\prime \prime} & -g^{\prime \prime} \tag{18}\\
g^{\prime \prime} & -g^{\prime \prime} & 0 \\
-g^{\prime \prime} & 0 & g^{\prime \prime}
\end{array}\right)
$$

where $g "=-2 \sqrt{3} g_{\text {JT3 }}$.

Fit to determine the Jahn-Teller parameters for the $\mathrm{B}^{1} \mathrm{E}^{\prime \prime}$ state of NH_{3}

To determine the required parameters a fit was performed to the data shown in Table 2 from Allen et al ${ }^{4}$. Note that the $v_{4}>0$ energies given above came from levels with one quantum of v_{2}, as a more complete set of observed levels is available, and the data suggests coupling between modes is small.

Table 2 Observed and calculated Vibrational Levels for the $\mathrm{B}^{\mathbf{1}} \mathrm{E}$ " state of NH_{3}

	Obs	Obs-Calc
$0^{0} \mathrm{E}^{\prime \prime}$	0.0	-5.7
$2^{1} \mathrm{E}^{\prime}$	898.2	0.0
$4^{1} \mathrm{E}^{\prime \prime}$	1506.0	11.3
$4^{2} \mathrm{E}^{\prime \prime}$	2611.0	6.2
$4^{2} \mathrm{E}^{\prime \prime}$	2776.0	-12.0
$3^{1} \mathrm{~A}_{2}^{\prime \prime}$	2770.7	0.1
$3^{1} \mathrm{~A}_{1}{ }^{\prime \prime}$	3229.2	0.1
$3^{1} \mathrm{E}^{\prime \prime}$	3401.0	0.0

Normal coordinates for the $\mathrm{B}^{1} \mathrm{E}$ " state of $\mathrm{NH}_{2} \mathrm{D}$

It is instructive to look at how the normal coordinates change for $\mathrm{NH}_{2} \mathrm{D}$ and $\mathrm{ND}_{2} \mathrm{H}$; see, for example, the transformation between internal and normal coordinates for $\mathrm{NH}_{2} \mathrm{D}$ given in Table 3.

Table 3 Transformation between dimensionless normal coordinates and Internal coordinates for the $\mathrm{B}^{1} \mathrm{E}^{\prime \prime}$ state of $\mathrm{NH}_{2} \mathrm{D}$

		q_{1}	q_{2}	$9_{3 x}$	$q_{3 y}$	$q_{4 x}$	$q_{4 y}$
		$\mathrm{N}-\mathrm{H}$ symmetric stretch	umbrella	N-D stretch	N-H asymmetric stretch	HNH bend	HNH wag
δr_{1}	N-D	-0.01175	0.00000	0.09033	0.00000	-0.00737	0.00000
δr_{2}	$\mathrm{N}-\mathrm{H}$	0.07462	0.00000	0.00736	0.07623	0.00135	-0.00229
δr_{3}	$\mathrm{N}-\mathrm{H}$	0.07462	0.00000	0.00736	-0.07623	0.00135	0.00229
$\delta \theta_{1}$	H-N-H	-0.01252	0.00000	0.02805	0.00000	0.21828	0.00000
$\delta \theta_{2}$	H-N-D	0.00626	0.00000	-0.01403	0.01429	-0.10914	0.17394
$\delta \theta_{3}$	D-N-H	0.00626	0.00000	-0.01403	-0.01429	-0.10914	-0.17394
$\delta \phi$		0.00000	0.29672	0.00000	0.00000	0.00000	0.00000

Note that the degenerate modes separate naturally into N-H and N-D motions. The choice of symmetry coordinates made in the main text means that we can easily correlate modes between the different species.

1. J. M. Allen, M. N. R. Ashfold, R. J. Stickland and C. M. Western, Mol. Phys., 1991, 74, 4960.
2. T. A. Barckholtz and T. A. Miller, Int. Rev. Phys. Chem., 1988, 17, 435-524.

[^0]: 1 Dept of Molecular and Laser Physics, Radboud University Nijmegen, IMM-FNWI, Nijmegen, The Netherlands
 2 Current address: Department of Chemistry, University of Leicester, Leicester, UK
 3 Current address: Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan
 4 School of Chemistry, University of Bristol, Cantock's Close, Bristol, UK BS8 1TS

