Electronic supplementary information

High and Stable Photoelectrochemical Activity of ZnO/ZnSe/CdSe/Cu_xS Core-Shell Nanowire Arrays: Nanoporous Surface with Cu_xS as a Hole Mediator

Wei-Xin Ouyang, Yu-Xiang Yu*, Wei-De Zhang*

School of Chemistry and Chemical Engineering, South China University of Technology, 381 Wushan Road, Guangzhou 510640, People's Republic of China

Figure S1. XRD pattern of ZnO/ZnSe/CdSe/Cu_xS sample. Peaks from FTO and ZnO are indicated by # and &, respectively.

Figure S2. XPS spectra of Zn, O, Cd and Se elements of the ZnO/ZnSe/CdSe/Cu_xS

Electrode Materials	Methods ^(a)	Light Source	Electrolyte	Saturated Photocurrent density (mA/cm ²)	Maximu m IPCE	Ref.
CdSe/ZnO	SILAR	AM 1.5	0.5M Na ₂ S	3.5 (0.25V vs Ag/AgCl)	46% at 460 nm	1
CdSe/CdS/ZnO	SILAR-CdS CBD-CdSe	AM 1.5G	1M Na ₂ S	9.15 (0V vs SCE)	-	2
IrO _x ·nH ₂ O/CdSe /CdS/ZnO	SILAR-CdS CBD-CdSe	AM 1.5G	0.25M Na ₂ S, 0.35M Na ₂ SO ₃	13.9 (0.6V vs. RHE)	-	3
ZnO/CdTe/CdS	SILAR-CdS ED-CdTe	AM 1.5G	0.1 M KCl, 0.1 M Na ₂ S, 0.3 M S	12.4 (0V vs Ag/AgCl)	-	4
ZnO/CdSe	ED-CdSe	AM 1.5G	0.2 M Na ₂ S	14.9 (0.86V vs. RHE)	34% at 410 nm	5
ZnSe/CdS/CdSe/ ZnO	IE-ZnSe CBD-CdS, CdSe	AM 1.5G	0.35 M Na ₂ SO ₃ , 0.24 M Na ₂ S	5.6 (0.25V vs Ag/AgCl)	35% at 380 nm	6
CdSe/CdS/ZnO	SILAR-CdS, CdSe	AM 1.5	0.5 M Na ₂ S	14.5 (0.25V vs Ag/AgCl)	-	7
ZnO/ZnSe/CdSe /Cu _x S	IE-ZnSe, CdSe SILAR-Cu _x S	AM 1.5G	0.50 M Na ₂ S, 0.50 M Na ₂ SO ₃	16.7 (0.25V vs Ag/AgCl)	89.5% at 500 nm	This work

Table S1. Photoelectrochemical Performance Using II-VI Group Semiconductor

Sensitized ZnO Nanowire/Nanorod Array Photoelectrodes

(a) SILAR: Successive Ionic Layer Adsorption and Reaction; CBD: Chemical Bath Deposition; ED: Electrochemical Deposition; IE: Ion Exchange;

References

C. J. Lin, S. Y. Chen and Y. H. Liou, *Electrochem. Commun.*, 2010, **12**, 1513-1516.
M. Seol, H. Kim, W. Kim and K. Yong, *Electrochem. Commun.*, 2010, **12**, 1416-1418.

3. M. Seol, J. W. Jang, S. Cho, J. S. Lee and K. Yong, *Chem. Mater.*, 2013, **25**, 184-189.

4. R. Liu, X. N. Wang, H. Zhou, T. Wang, J. Q. Zhang, Y. Xu, C. He, B. Y. Wang, J. Zhang and H. Wang, *Int. J. Hydrogen Energ*, 2013, **38**, 16755-16760.

5. J. W. Miao, H. B. Yang, S. Y. Khoo and B. Liu, Nanoscale, 2013, 5, 11118-11124.

6. H. Xu, R. Mo, C. W. Cheng, G. J. Ai, Q. Chen, S. Yang, H. X. Li and J. X. Zhong, *Rsc Adv.*, 2014, 4, 47429-47435.

7. C. J. Lin, L. C. Kao, Y. Huang, M. A. Banares and S. Y. H. Liou, *Int. J. Hydrogen Energ*, 2015, **40**, 1388-1393.