Supplementary Information

Pressure and electric field-induced metallization in the phase-engineered ZrX₂ (X=S,Se,Te) bilayers

Ashok Kumar^{1*}, Haiying He², Ravindra Pandey^{3*}, P. K. Ahluwalia⁴ and K. Tankeshwar^{1*}

¹Department of Physics, Panjab University, Chandigarh 160014, India ²Department of Physics and Astronomy, Valparaiso University, Valparaiso, Indiana 46383, USA ³Department of Physics, Michigan Technological University, Houghton, Michigan 49931, USA ⁴Department of Physics, Himachal Pradesh University, Shimla 171005, India

(Jun 15, 2015)

*Email:

Ashok Kumar (ashok.1777@yahoo.com)

Ravindra Pandey (pandey@mtu.edu)

K. Tankeshwar (tankesh@pu.ac.in)

Table S1: Bulk ZrX ₂ - trigonal phase: The structural	l parameters and band gap calculated at DFT level of
theory. The number of bands crossing the Fermi level	that gives the ballistic quantum conductance (in the
unit of G_0) is also given for $ZrSe_2$ and $ZrTe_2$.	

Material	level	a (Å)	c (Å)	E _g (eV)
ZrS ₂	PBE	3.70	5.54	0.63
	PBE+vdW	3.65	5.46	0.47
	PBE+vdW+U	3.72	5.56	0.95
	EXP.	3.661 ^a	5.815 ^a	1.68ª
ZrSe ₂	PBE	3.82	5.81	Metal (1G ₀)
	PBE+vdW	3.77	5.74	Metal (3G ₀)
	PBE+vdW+U	3.87	5.93	0.5
	EXP.	3.773ª	6.13ª	1.20°
ZrTe ₂	PBE	4.04	6.18	Metal (5 G_0)
	PBE+vdW	3.98	6.16	Metal (5G ₀)
	PBE+vdW+U	4.10	6.39	Metal (3G ₀)
	EXP.	3.949 ^b	6.629 ^b	

^aRef. [R1], ^bRef. [R2], ^cRef. [R3]

Material	Phase	$R_0(Å)$			
		PBE	PBE+vdW	PBE+vdW+U	
ZrS ₂	Trigonal	3.78	2.98	3.05	
	Hexagonal	3.37	3.08	3.11	
ZrSe ₂	Trigonal	3.62	3.02	3.08	
	Hexagonal	3.27	3.13	3.15	
ZrTe ₂	Trigonal	3.53	3.20	3.21	
	Hexagonal	3.82	3.29	3.33	

Table S2: Interlayer separation (R_0) of ZrX_2 bilayer at different level of theory.

Figure S1: The electronic band structure of T-ZrTe₂ showing an indirect band gap ($\Gamma \rightarrow M$) of ~ 30 meV.

Figure S2: Electronic band structure of ZrS_2 and $ZrSe_2$ bilayers at the strain $\mathcal{E} = 0.7$.

Figure S3: Electronic band structure at different values of strain \mathcal{E} for ZrS₂ bilayer (for T-phase in upper panel and for H-phase in lower panel). The red and green color represents $e_g(dx^2-y^2 \text{ and } dz^2)$ and t2g (d_{xy} , d_{yz} , d_{xz}) orbitals of Zr atoms, respectively. The blue and yellow bands indicate the p_z and (p_x , p_y) orbitals of S atoms, respectively. Fermi level is at zero.

Figure S4: A side view of charge density difference profile of bilayer ZrS_2 (upper panel for T-phase and lower panel for H-phase) at different strain values. The blue (red) region corresponds to accumulation (depletion) of charge. The isosurface is $2 \times 10^{-4} \text{ e/Å}^3$.

Figure S5: Electronic band structure at several values of E for ZrS_2 bilayer (for T-phase in upper panel and for H-phase in lower panel). The red and green color represents $e_g(dx^2-y^2 \text{ and } dz^2)$ and t2g (d_{xy}, d_{yz}, d_{xz}) orbitals of Zr atoms, respectively. The blue and yellow bands indicate the p_z and (p_x, p_y) orbitals of S atoms respectively. Fermi level is at zero.

Figure S6: Electronic band structure as a function of electric field (E) (without imposing symmetry constraints) for ZrS₂ bilayer. Fermi level is at zero.

Figure S7:A side view of charge density difference profile of bilayer ZrS_2 (upper panel for T-phase and lower panel for H-phase) at various electric field values. The blue (red) region corresponds to accumulation (depletion) of charge. The isosurface is 1 x 10⁻⁵ e/Å³.

Figure S8: Electronic band structure with and without spin orbit coupling (SOC) effect for ZrS_2 bilayer. Fermi level is at zero. The splitting of bands are shown within the drawn circles.

References:

R1. D. L. Grenwayand R. Nitsche, *Prepration and optical properties of group IV-VI₂chalcogenides having the CdI₂ structure, J. Phys. Chem. Solids.* **26**, 1445 (1965).

R2. W. G. Wyckoff, Crystal structures, Vol. 1 2nd ed. pp 269 (1965).

R3. P. A. Lee, G. Said, R. Davis and T. H.Lim, *On the optical properties of some layer compounds*, J. Phys. Chem. Solids. **30**, 2719 (1969).