Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

## **Supporting information**

## Charge Density Study of the $\pi$ -Delocalization and

## Intermolecular Interactions

Lai-Chin Wu,<sup>a</sup> Wen-Chun Chung,<sup>a</sup> Chih-Chieh Wang,<sup>\*b</sup> Gene-Hsiang Lee,<sup>c</sup> Shih-I

Lu,<sup>b</sup> and Yu Wang\*a

<sup>a</sup> Department of Chemistry, National Taiwan University, Taipei, Taiwan.

<sup>b</sup> Department of Chemistry, Soochow University, Taipei, Taiwan.

<sup>c</sup> Instrumentation Center, National Taiwan University, Taipei, Taiwan.

E-mail: wangyu@ntu.edu.tw; ccwang@scu.edu.tw

**KEYWORDS**  $\pi$ - $\pi$  stacking, deformation density; topological analysis; hydrogen

bond; Fermi-hole distribution, Hirshfeld surface

## **Supplementary Materials**

Figure S1. Twelve  $p_{\pi}$ -molecular orbitals of **atrz** 

Table S1. Crystal data and structure refinement for atrz.

Table S2. Agreement Indices of Various LS-Refinements for atrz.

Table S3 Thermal parameters  $(U_{ij})$  and multipole populations  $(P_{lm})$  of **atrz**.

Table S4.  $\pi$ - $\pi$  interactions of **atrz** in crystal.

Table S 5. H-bonds of **atrz**.



Figure S1. Twelve  $p_{\pi}$ -molecular orbitals of atrz

| Table ST. Crystal data and structure I                                                                           | ermement for all'z.                                                                                                |
|------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|
| Empirical formula                                                                                                | $C_4H_4N_8$                                                                                                        |
| Formula weight                                                                                                   | 164.15                                                                                                             |
| Temperature                                                                                                      | 100(2) K                                                                                                           |
| Wavelength                                                                                                       | 0.71073 Å                                                                                                          |
| Crystal system                                                                                                   | Monoclinic                                                                                                         |
| Space group                                                                                                      | P2(1)/n                                                                                                            |
| Unit cell dimensions                                                                                             | a = 4.9579(10)  Å                                                                                                  |
|                                                                                                                  | b = 6.4613(13)  Å                                                                                                  |
|                                                                                                                  | c = 10.181(2)  Å                                                                                                   |
|                                                                                                                  | $\beta = 92.28(3)^{\circ}$                                                                                         |
| Volume                                                                                                           | 325.87(11) Å <sup>3</sup>                                                                                          |
| Z                                                                                                                | 2                                                                                                                  |
| Density (calculated)                                                                                             | 1.673 Mg/m <sup>3</sup>                                                                                            |
| Absorption coefficient                                                                                           | 0.126 mm <sup>-1</sup>                                                                                             |
| F(000)                                                                                                           | 168                                                                                                                |
| Crystal size                                                                                                     | 0.24 x 0.20 x 0.20 mm <sup>3</sup>                                                                                 |
| Theta range for data collection                                                                                  | 3.74 to 58.52°                                                                                                     |
| Index ranges                                                                                                     | -11<=h<=11, -15<=k<=15, -24<=l<=24                                                                                 |
| Reflections collected                                                                                            | 60794                                                                                                              |
| Independent reflections                                                                                          | 4718 [R(int) = 0.0315]                                                                                             |
| Completeness to theta = $58.52^{\circ}$                                                                          | 100.0 %                                                                                                            |
| Max. and min. transmission                                                                                       | 0.9752 and 0.9704                                                                                                  |
| Refinement method                                                                                                | Full-matrix least-squares on F <sup>2</sup>                                                                        |
| Data / restraints / parameters                                                                                   | 4181 / 0 / 63                                                                                                      |
| Goodness-of-fit on F <sup>2</sup>                                                                                | 1.083                                                                                                              |
| Final R indices $[I \ge 2\sigma(I)]$                                                                             | R1 = 0.0283, $wR2 = 0.0891$                                                                                        |
| R indices (all data)                                                                                             | R1 = 0.0333, $wR2 = 0.0941$                                                                                        |
| Largest diff. peak and hole                                                                                      | 0.677 and -0.317 e.Å <sup>-3</sup>                                                                                 |
| ${}^{a}R_{\text{int}} = \sum  F_{o}^{2} - F_{o}^{2}(\text{mean})  / \sum  F_{o}^{2} ;  R_{1} = \sum  F_{o} ^{2}$ | $-F_{\rm c}/\Sigma F_{\rm o} ;  wR_2 = \{\Sigma w(F_{\rm o}^2 - F_{\rm c}^2)^2 /\Sigma w(F_{\rm o}^2)^2 ]\}^{1/2}$ |

Table S1 Crystal data and structure refinement for atrz

 $^{c}\text{GOF}=[\Sigma w|F_{o}-F_{c}|^{2}/(N_{ref}-N_{v})]^{1/2};$ 

| N <sub>ref</sub> <sup>[a]</sup> : 4086 | $N_v{}^{[b]}$ | $N_{ref}/N_v$ | $R_1^{[c]}$ | $R_{Iw}^{[d]}$ | $R_2^{[e]}$ | $R_{2w}^{[f]}$ | $GOF^{[g]}$ |
|----------------------------------------|---------------|---------------|-------------|----------------|-------------|----------------|-------------|
| Conventional                           | 54            | 75.67         | 0.031       | 0.044          | 0.057       | 0.088          | 5.318       |
| Monopole                               | 64            | 64.86         | 0.032       | 0.047          | 0.063       | 0.093          | 5.637       |
| Dipole                                 | 88            | 46.97         | 0.029       | 0.042          | 0.060       | 0.083          | 5.083       |
| Quadrupole                             | 118           | 34.92         | 0.025       | 0.036          | 0.054       | 0.072          | 4.422       |
| Octupole                               | 180           | 25.70         | 0.016       | 0.016          | 0.030       | 0.033          | 2.001       |

Table S2. Agreement Indices of Various LS-Refinements for atrz.

[a]  $N_{ref.}$  number of reflections. [b]  $N_v$ : number of variables. [c]  $R_1 = [\Sigma |F_0 - F_c| / \Sigma |F_0|]^{1/2}$ . [d]  $R_1 = \Sigma |F_0 - F_c| / \Sigma |F_0|$ ;  $R_{Iw} = (\Sigma |w| F_0 - F_c|^2 | / \Sigma |w F_0^2|)^{1/2}$ ;  $R_2 = [\Sigma |F_0^2 - F_c^2| / \Sigma (F_0^2)]$ ;  $R_{2w} = \{\Sigma |w(F_0^2 - F_c^2)^2 | / \Sigma |w(F_0^2)^2|]\}^{1/2}$ ; GOF= $[\Sigma w |F_0 - F_c|^2 / (N_{ref} - N_v)]^{1/2}$ ,  $w = 1/[\sigma(F_0^2)]$ 

| Table S3 | 3 Atom       | tic Thermal parameters $(U_{ij})$ and multipole populations $(P_{lm})$ of <b>atrz</b> . |
|----------|--------------|-----------------------------------------------------------------------------------------|
| N(1)     | $U_{ m ij}$  | 0.012025 0.010482 0.014981 -0.003082 0.001462 -0.002119                                 |
|          | $P_{\rm lm}$ | 4.9678 0.0000 0.0197 -0.0515 -0.0273 0.0669 -0.0067 0.0969 -0.0651 -0.0163              |
|          |              | 0.1170 -0.0015 -0.0304 0.0470 0.0018 -0.0003 -0.0462 0.0000 0.0000 0.0000               |
|          |              | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000                                               |
| N(2)     | $U_{ m ij}$  | 0.013111 0.010509 0.013515 -0.001007 0.001523 -0.003244                                 |
|          | $P_{\rm lm}$ | 4.9990 0.0000 -0.0061 -0.0648 -0.0290 0.0622 0.0055 0.0908 -0.0598 -0.0073              |
|          |              | 0.0988 0.0059 -0.0269 0.0668 -0.0030 -0.0013 -0.0470 0.0000 0.0000 0.0000               |
|          |              | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000                                               |
| N(3)     | $U_{ m ij}$  | 0.009537 0.008225 0.009763 -0.001171 0.001078 -0.000816                                 |
|          | $P_{\rm lm}$ | 5.0386 0.0000 0.0214 -0.0003 -0.0177 0.0119 -0.0055 0.0005 0.0042 0.0213                |
|          |              | 0.1553 -0.0107 0.0785 0.1201 0.0052 -0.0011 0.0064 0.0000 0.0000 0.0000                 |
|          |              | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000                                               |
| N(4)     | $U_{ m ij}$  | 0.010567 0.008828 0.010642 -0.001645 0.001835 -0.001220                                 |
|          | $P_{\rm lm}$ | 4.9735 0.0000 -0.0099 0.0477 -0.0541 -0.0281 -0.0120 -0.0328 -0.1395 0.0005             |
|          |              | 0.1356 -0.0066 0.0279 0.0473 -0.0018 -0.0198 0.0262 0.0000 0.0000 0.0000                |
|          |              | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000                                               |
| C(1)     | $U_{ m ij}$  | 0.010302 0.010450 0.012192 -0.001931 0.002053 -0.001202                                 |
|          | $P_{\rm lm}$ | 4.4996 0.0000 0.0008 0.0500 0.0689 0.1549 -0.0037 -0.0493 -0.1106 -0.0095               |
|          |              | 0.2496 0.0013 0.0187 0.1893 0.0117 -0.0062 0.0312 0.0000 0.0000 0.0000                  |
|          |              | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000                                               |
| C(2)     | $U_{ m ij}$  | 0.010967 0.010225 0.011015 -0.000888 0.002071 -0.001233                                 |
|          | $P_{\rm lm}$ | 4.5099 0.0000 -0.0036 0.0764 0.0525 0.1802 0.0030 -0.0554 -0.1121 0.0157                |
|          |              | 0.2661 0.0004 0.0117 0.1952 0.0000 0.0173 0.0360 0.0000 0.0000 0.0000                   |
|          |              | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000                                               |
| H(1)     | $U_{ m ij}$  | 0.013112 0.000000 0.000000 0.000000 0.000000 0.000000                                   |
|          | $P_{\rm lm}$ | 0.5071 0.0000 0.0199 0.0007 -0.1027 0.0000 0.0000 0.0000 0.0000 0.0000                  |
|          |              | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000                   |
|          |              | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000                                               |
| H(2)     | $U_{ m ij}$  | 0.012820 0.000000 0.000000 0.000000 0.000000 0.000000                                   |
|          | $P_{\rm lm}$ | 0.5046 0.0000 -0.0048 -0.0373 -0.0906 0.0000 0.0000 0.0000 0.0000 0.0000                |
|          |              | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000                   |
|          |              | 0.0000 0.0000 0.0000 0.0000 0.0000                                                      |

| $\begin{array}{c} \operatorname{Ring}(i) & \rightarrow \\ \operatorname{Ring}(j) \end{array}$ | Slip angle <sup>[b]</sup><br>(i,j)/° | Interplanar<br>(i,j)<br>distance <sup>[c]</sup> /Å | Horizontal<br>shift between<br>the (i,j) ring<br>centroids <sup>[d]</sup> /Å | Distance<br>between the<br>(i,j) ring<br>centroids/Å |
|-----------------------------------------------------------------------------------------------|--------------------------------------|----------------------------------------------------|------------------------------------------------------------------------------|------------------------------------------------------|
| $R(1) \rightarrow R(1)_i$                                                                     | 17.8                                 | 3.17                                               | 1.02                                                                         | 3.33                                                 |

Table S4.  $\pi$ - $\pi$  interactions of **atrz** in crystal.<sup>[a]</sup>

[a] Symmetry code: i = -x, 1-y, -z, Ring(i)/Ring(j) denotes the centroids of i-th/j-th of triazole/triazole rings; R(1) = N(1)-N(2)-C(2)-N(3)-C(1). [b] Slip angle: the angle formed between the ring-centroid vector (CC) and the ring normal to one of the triazole planers. [c] Interplanar distance: the perpendicular distance between two parallel triazole rings. [d] Horizontal shift between the ring centroids: a shift from the face-to-face alignment.

| Table S 5. H-bonds of <b>atrz</b> . <sup>[a]</sup> |         |          |                      |  |  |
|----------------------------------------------------|---------|----------|----------------------|--|--|
| D–H…A                                              | H…A (Å) | D…A (Å)  | $\angle$ D–H···A (°) |  |  |
| C1–H1····N1 <sub>i</sub>                           | 2.45    | 3.252(4) | 130                  |  |  |
| C2–H2····N2 <sub><i>ii</i></sub>                   | 2.39    | 3.343(2) | 146                  |  |  |

[a] Symmetry operations: i = 1-x, 1-y, -z; ii = -0.5-x, -0.5+y, 0.5-z.