PCCP

Electronic Supplementary Information

Intriguing emission properties of triphenylamine-carborane systems

So-Yoen Kim,^a Yang-Jin Cho,^a Guo Fan Jin,^a Won-Sik Han,^b Ho-Jin Son,^a Dae Won Cho^{*,a,c} and Sang Ook Kang^{*,a,c}

^a Department of Advanced Materials Chemistry, Korea University (Sejong campus), Sejong, 339-700, South Korea. Email: sangok@korea.ac.kr

^b Department of Chemistry, Seoul Women's University, Seoul 139-774, South Korea.

^c Center for Photovoltaic Materials, Korea University (Sejong campus), Sejong, 339-700, South Korea. E-mail: dwcho@korea.ac.kr

Experimental

General Procedures

All manipulations were performed under a dry nitrogen atmosphere using standard Schlenk techniques or in the glove box under the vacuum atmospheres. Solvents were purchased from Samshun pure chemical company and used without purification. Glassware, syringe, magnetic stirring bar, and needle were dried in a convection oven overnight. Decaborane $(B_{10}H_{14})$ was purchased from Katchem and used after sublimation. The starting materials **1**, **2**, **3** and **4** were synthesized according to the literature procedure.^{S1,S2}

The ¹H, ¹¹B, and ¹³C NMR spectra were recorded on a Buruker 300 spectrometer operating at 300.1 and 100.5, 128.4 MHz, respectively. $^1\text{H}\textsc{,}~^{11}\text{B}$ and ^{13}C NMR chemical shifts were measured relative to internal residual peaks from the lock solvent (99.9% $CDCl_3$), and then referenced to TMS (Si(CH_3)₄, 0.00 ppm). The HR-MS analysis was performed by high sensitive LC/MS/MSn (n=10) spectrometer (Thermo Fisher Scientific, LCQ Fleet Hyperbolic Ion Trap MS/MSn Spectrometer). An UV-Vis-NIR spectrophotometer (Agilent Technologies, Cary 5000) and fluorescence а spectrophotometer (Varian, Cary Eclipse) were used to measure the absorption and emission spectra, respectively.

Synthetic details

1-(4-triphenylamine)-2-phenyl-o-carborane (1a)

A mixture of **1** (2.0 g, 4.40 mmol), diphenylamine (1.79 g, 10.56 mmol), K_2CO_3 (1.82 g, 13.20 mmol), $Pd(PPh_3)_4$ (0.30 g, 0.33 mmol) and 1,1'-Bis(diphenylphosphino)ferrocene (0.3 g, 0.54 mmol) were dissolved in dry toluene (50 mL). The mixture was stirred under N_2 atmosphere for overnight at 110 °C. The mixture solution was cool to the room temperature, and then organic layer was extracted with CH_2Cl_2 (3 times with 20 mL) and dried over magnesium sulfate. The solvent was removed under reduced pressure and the residue was purified by silica

gel column chromatography using CH_2Cl_2 /hexane (1:3) eluent to afford (0.92 g, 53% yield) as a yellowish solid. ¹H NMR (CDCl₃): δ 7.48 (d, J = 7.5 Hz, 2H), 7.34-7.21 (m, 9H), 7.08 (t, J=7.2 Hz, 2H), 7.99 (d, J = 7.8 Hz, 4H), 6.74 (d, J = 9.3 Hz, 2H). ¹¹B NMR (CDCl₃): δ -0.81, -9.00. ¹³C NMR (CDCl₃): δ 149.35, 146.68, 132.62, 132.35, 131.72, 130.82, 130.75, 130.54, 130.30, 130.00, 129.24, 128.71, 127.60, 126.15, 125.54, 125.12, 124.71, 124.40, 123.18, 123.11, 121.48, 120.17, 119.76, 86.12, 85.57. The ESI-MS calculated for C₂₆H₂₉B₁₀N was 465.3231. Found: 466.3309 [M+H]⁺.

1,2-bis(4-triphenylamine)-o-carborane (1b)

The compound was synthesized according to a procedure similar to that for 1a, using 2 instead of 1, to give 0.73 g of white powder (66.7% yield). ¹H NMR (CDCl₃): δ 7.29-7.20 (m, 10H), 7.10-7.01 (m, 14H), 6.78 (d, J = 9.3 Hz, 4H). ¹¹B NMR (CDCl₃): δ -0.90, -8.86. ¹³C NMR (CDCl₃): δ 149.44, 146.84, 131.74, 129.65, 125.37, 124.20, 123.39, 120.62, 86.36. The ESI-MS calculated for C₃₈H₃₈B₁₀N₂ was 632.3966. Found: 633.4057 [M+H]⁺.

1-(3-triphenylamine)-2-phenyl-o-carborane (2a)

The compound was synthesized according to a procedure similar to that for **1a**, using **3** instead of **1**, to give 1.46 g of white powder (72% yield). ¹H NMR (CDCl₃): δ 7.40 (d, *J* = 8.4 Hz, 2H), 7.33 (d, *J* = 6.6 Hz, 1H), 7.26-7.21 (m, 6H), 7.11-6.97 (m, 5H), 6.85 (t, *J* = 10.2 Hz, 5H). ¹¹B NMR (CDCl₃): δ -0.83, -8.87. ¹³C NMR (CDCl₃): δ 147.82, 147.14, 131.55, 131.18, 130.78, 130.59, 130.43, 130.24, 129.53, 129.10, 128.81, 128.60, 128.39, 127.66, 127.42, 126.29, 125.97, 125.70, 125.34, 124.78, 124.52, 123.97, 123.63, 122.64, 85.30, 85.10. The ESI-MS calculated for C₂₆H₂₉B₁₀N was 465.3231. Found: 466.3271 [M+H]⁺.

1,2-bis(4-triphenylamine)-o-carborane (2b)

The compound was synthesized according to a procedure similar to that for **1a**, using **4** instead of **1**, to give 1.03 g of white powder (79.2% yield). ¹H NMR (CDCl₃): δ 7.27-7.22 (m, 3H), 7.16 (s, 1H), 7.09-7.03 (m, 4H), 7.01-6.91 (m, 7H). ¹¹B NMR (CDCl₃): δ -0.84, -8.92. ¹³C NMR (CDCl₃): δ 147.87, 147.16,

References

131.71, 130.59, 130.34, 130.26, 130.08, 129.72, 128.85, 128.77, 128.62, 126.33, 126.01, 125.51, 124.60, 124.57, 123.71, 122.72, 85.11. The ESI-MS calculated for $C_{38}H_{38}B_{10}N_2$ was 632.3966. Found: 633.4016 [M+H]⁺.

 Table S2. Absorption and emission maxima (nm), and extinction coefficient

 (ɛ) for meta-substituted dyads measured in different solvents

	2a		2b	
	abs (log <i>ɛ</i>)	em	abs (log <i>ɛ</i>)	em
<i>n</i> -hexane	300 (4.4)	409	299 (nd)	362
		683		412
				661
Ethyl ether	298 (4.4)	436	297 (4.6)	362
				436
THF	300 (4.4)	448	299 (4.6)	366
				454
CH_2Cl_2	301 (4.4)	459	300 (4.6)	369
				462
CH ₃ CN	297 (4.4)	471	297 (nd)	369
-	<u>`</u>			474

nd: Exact values were not determined owing to poor solubility

S2 J. O. Huh, H. Kim, K. M. Lee, Y. S. Lee, Y. Do, M. H. Lee, *Chem. Commun.* 2010, 46, 1138–1140.

Fig. S1. Absorption and emission spectra of triphenylamine in various solvents: 1, *n*-hexane; 2, ethyl ether; 3, THF; 4, CH₂Cl₂; 5, CH₃CN.

Fig. S2. Emission spectra of **1a** (2 μ M) in H₂O-CH₃CN. λ_{ex} = 300 nm. Inset photograph: Emission images of **1a** in CH₃CN (0 %) and aqueous mixtures (10–90%, interval fraction is 10 %) under 365 nm-UV illumination.

 Table S1. Absorption and emission maxima (nm), and extinction coefficient

 (ɛ) for para-substituted dyads measured in different solvents

	1a		1b	
	λ_{abs} (log ε)	λ_{em}	λ_{abs} (log ε)	λ_{em}
n-hexane	302 (4.3)	399	302 (4.5)	372
	328 (4.4)	590	321 (4.5)	590
Ethyl ether	301 (4.3)	422	302 (4.6)	393
	329 (4.4)		324 (4.6)	
THF	303 (4.2)	432	304 (4.4)	382
	330 (4.3)		325 (4.5)	
CH ₂ Cl ₂	306 (4.3)	446	307 (4.5)	393
	331 (4.3)		326 (4.5)	
CH ₃ CN	304 (4.3)	461	304 (4.5)	399
	332 (4.3)		322 (4.5)	