SUPPORTING INFORMATION

Complexation-Induced Fluorescence and Acid-Base Properties of Dapoxyl Dye with γ -cyclodextrin: A Drug-Binding Application using Displacement Assay

Kaushik Pal,[‡] Suman Mallick[‡] and Apurba L. Koner *

^a Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, India. E-mail: akoner@iiserb.ac.in; Fax: +91-755 6692 392; Tel: +91-755 6692 376

Figure S1: Fluorescence enhancement of dapoxyl dye (4 μ M) upon successive addition of γ -CD up to 35mM at pH 2.0 (left) and pH 9.0 (right)

Figure S2: Energy optimized structure of DSS and γ -CD (a) side view, (b) top view of 1:1 complex, (c) side view and (d) top view of 1:2 complex.

Figure S3: Fluorescence titration of DSS with γ -CD in phosphate buffer solution (100 mM) at pH 7.4 shows blue shift in the emission maxima with gradual increase in the fluorescence intensity, inset shows data fitted with 1:2 binding model having K₁K₂=2700 ± 300) M⁻².

Figure S4. Binding titration plot and binding constant of Resazurin with γ -CD at pH 7.4 using (a) UV and (b) fluorescence spectroscopy. Titrations are performed with 5μ M Resazurin and gradual increase of γ -CD concentration; data was fitted with 1:1 binding equation.

Figure S5. UV-Vis of studied drugs in water at pH 7.4

Hydrodynamic volume calculation of *p*-CD DSS complex:

Hydrodynamic diameter of γ -CD =17.5 Å^[1], Hydrodynamic volume of the γ -CD = 2800

Å³, Molar Hydrodynamic volume of γ-CD ~1690 cm³ mol⁻¹

Molar Hydrodynamic volume of phenyl group $\approx 43.4 \text{ cm}^3 \text{ mol}^{-1[2]}$

Molar Hydrodynamic volume of isopropyl group $\approx 30.7 \text{ cm}^3 \text{ mol}^{-1[2]}$ and as N, N-

dimethylamino group is similar to isopropyl group we assume the same volume for *N*, *N*-dimethylamino group for our calculation.

So molar hydrodynamic volume of *N*, *N*-dimethylanilino group \approx (43.4+ 30.7) cm³ mol⁻¹ \approx 74.1 cm³ mol⁻¹

As it is a 1:2 complex and the dimethylanilino group projecting both the side, then total molar hydrodynamic volume of the complex \approx {volume of γ -CD+ (*N*, *N*-dimethylanilino group x2)} \approx {1690+ (74.1x2)} cm³ mol⁻¹ \approx 1838.2 cm³ mol⁻¹

References:

- [1] J. Szejtli, Chem. Rev. 1998, 98, 1743-1754.
- [2] H. Bakirci, A. L. Koner, W. M. Nau, J. Org. Chem. 2005, 70, 9960-9966.