## Supplementary Information

## Wavelength Resolved Specific Optical Rotations and Homochiral

## Equilibria

Prasad L. Polavarapu* and Cody L. Covington


Figure S1.Weighted non-linear least squares (WLNS) fit of experimental [ $\alpha$ ] to Eq. (15). Open circles are experimental data points and solid line is the WLNS fit. The panels (A)-(F) are wavelength resolved $[\alpha]$ at $633,589,546,436,405$ and 365 nm , respectively. The relative uncertainty is lower at shorter wavelengths and higher concentrations.

Conformational analysis was undertaken with MacroModel program ${ }^{1}$ using Mixed Torsional/Low-mode sampling procedure. Two low energy conformations of monomer and four low energy conformations of dimer were identified. These conformations are same as those found previously by Goldsmith et $\mathrm{al}^{2}$. The populations of conformations optimized using B3LYP, B3LYP-GD2 ${ }^{3}$, and M06-2 ${ }^{4}$ functionals are summarized in Table S1.

|  |  | with PCM |  | Vacu |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| conformer ${ }^{\text {a }}$ | B3LYP | B3LYP-GD2 ${ }^{\text {b }}$ | M06-2X ${ }^{\text {c }}$ | B3LYP-GD2 | M06-2X |
| M-1 | 0.96 | 0.96 | 0.98 | 0.98 | 0.99 |
| M-2 | 0.04 | 0.04 | 0.02 | 0.02 | 0.01 |
| D-1 | 0.89 | 0.97 | 0.98 | 0.97 | 0.98 |
| D-2 | 0.03 | 0.01 | 0.00 | 0.01 | 0.00 |
| D-3 | 0.06 | $N A^{\text {d }}$ | $N A^{\text {d }}$ | NA ${ }^{\text {d }}$ | $N A^{\text {d }}$ |
| D-4 | 0.02 | 0.02 | 0.02 | 0.02 | 0.02 |
| ${ }^{\mathrm{a}} \mathrm{M}-1$ and $\mathrm{M}-2$ are monomer conformers; D1-D4 are dimer conformers; ${ }^{\mathrm{b}} \mathrm{GD} 2$ is Grimm's long range dispersion correction(J. Comp. Chem., 27 (2006) 1787-99); ${ }^{〔}$ M06-2X is a functional dveloped by Truhlar and coworkers (Theor. Chem. Acc., 120 (2008) 215-41); ${ }^{d}$ this conformer converged to one of the other conformers |  |  |  |  |  |

B3LYP-GD2 and M06-2X level calculations clearly indicate that the dimer form of pantolactone has only one conformer as the predominant one.

The geometries optimized at B3LYP/6-311++G(2d,2p)/PCM level of theory were used for all further calculations. For calculations in $\mathrm{CCl}_{4}$ solvent, SOR calculations were undertaken at B3LYP/6-311++G(2d,2p) and CAM-B3LYP/aug-cc-pVTZ levels of theory using PCM. For calculations of SOR in $\mathrm{CHCl}_{3}$ solvent, the dominant dimer conformer was used at various levels of theory using PCM. These results are summarized in Tables S2 and S3. The solvent influence is limited, as can be seen when the results obtained in $\mathrm{CCl}_{4}$ and $\mathrm{CHCl}_{3}$ are compared at CAM-B3LYP/aug-cc-PVTZ level. The calculated SORs at this level of theory are also closest to the experimental values.

| Table S2: Comparison of Predicted SORs of monomer and dimer species of ( R )-( - )- $\alpha$-Hydroxy$\beta, \beta$-dimethyl- $\gamma$-butyrolactone in $\mathrm{CCl}_{4}$ at CAM-B3LYP/aug-cc-pVTZ and B3LYP/6-311++G(2d,2p) levels of theory |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| CAM-B3LYP/aug-cc-pVTZ B3LYP/6-311++G(2d,2p) |  |  |  |  |
| nm | $[\alpha]_{m}$ | $[\alpha]_{d}$ | $[\alpha]_{m}$ | $[\alpha]_{d}$ |
| 633 | -7.7 | -109.6 | -15.3 | -122.1 |
| 589 | -9.6 | -128.4 | -18.8 | -143.4 |
| 546 | -12.3 | -152.1 | -23.5 | -170.5 |
| 436 | -27.7 | -257.8 | -48.9 | -293.9 |
| 405 | -37.3 | -310.2 | -64.4 | -356.9 |
| 365 | -58.8 | -409.5 | -98.3 | -479.4 |

Table S3: SORs predicted for dimeric aggregate of $(R)-(-)$ - $\alpha$-hydroxy- $\beta, \beta$-dimethyl- $\gamma$-butyrolactone in $\mathrm{CHCl}_{3}$ at different levels of theory

| Optimization level --> | B3lyp/6-311++G(2d,2p)/PCM |  |  |  | M06-2x/6-311++G(2d,2p)/PCM |  |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| SOR Functional --> | B3LYP | B3LYP | CAM-B3LYP | M06-2X | B3LYP | M06-2X |
| Basis set --> | aug-cc-pVTZ | $6-311++G(2,2 p$ | aug-cc-pVTZ | aug-cc-pVTZ | $6-311++G(2,2 p)$ | $6-311++G(2,2 p)$ |
| $\lambda(n m)$ |  |  |  |  |  |  |
| 633 | -133.2 | -130.0 | -115.5 | -123.8 | -126.2 | -128.5 |
| 589 | -156.3 | -152.6 | -135.2 | -145.3 | -148.0 | -150.7 |
| 546 | -185.5 | -181.3 | -160.1 | -172.4 | -175.5 | -178.8 |
| 436 | -317.7 | -311.6 | -270.8 | -294.6 | -299.1 | -305.4 |
| 405 | -384.4 | -377.6 | -325.5 | -355.9 | -361.1 | -369.0 |
| 365 | -513.2 | -505.6 | -428.8 | -473.3 | -480.2 | -490.8 |

The optimized Cartesian coordinates for the lowest energy conformer at B3LYP/6$311++\mathrm{G}(2 \mathrm{~d}, 2 \mathrm{p}) / \mathrm{PCM}\left(\mathrm{CCl}_{4}\right)$ level are given for monomer and dimer forms of pantolactone in Tables S4 and S 5 respectively.

Table S4: B3LYP/6-311++G(2d,2p) $/ \mathrm{PCM}\left(\mathrm{CCl}_{4}\right)$ optimized structure ( $\mathrm{x}, \mathrm{y}, \mathrm{z}$ coordinates) of the Lowest energy conformer of monomer (SCF Energy= -460.4975 Hartrees):

| C | -0.495112 | -1.531711 | -0.199223 |
| :--- | ---: | ---: | ---: |
| C | -0.985153 | -0.084041 | 0.015752 |
| C | 0.248715 | 0.658729 | -0.534736 |
| H | -0.911943 | -2.242761 | 0.508214 |
| H | -0.673492 | -1.881833 | -1.215911 |
| H | 0.211545 | 0.630994 | -1.633256 |
| C | 1.396925 | -0.248016 | -0.118397 |
| O | 2.535436 | 0.085184 | 0.079782 |
| O | 0.415363 | 1.981126 | -0.088000 |
| H | 1.361869 | 2.127738 | 0.040053 |
| O | 0.947794 | -1.507893 | 0.018053 |
| C | -1.181350 | 0.201546 | 1.511392 |
| H | -1.407902 | 1.252978 | 1.673700 |
| H | -2.008851 | -0.394362 | 1.897312 |
| H | -0.291559 | -0.040406 | 2.093755 |
| C | -2.265258 | 0.207822 | -0.767231 |
| H | -2.564097 | 1.247515 | -0.634996 |
| H | -2.130311 | 0.026970 | -1.834457 |
| H | -3.086601 | -0.420150 | -0.418443 |

Table S5: B3LYP/6-311++G(2d,2p)/PCM(CCl ${ }_{4}$ ) optimized structure ( $\mathrm{x}, \mathrm{y}, \mathrm{z}$ coordinates) of the Lowest energy conformer of dimer (SCF Energy= -921.0093 Hartrees):

| C | 4.16756 | 0.767626 | -0.862621 |
| :--- | :--- | :--- | :--- |
| C | 3.76002 | -0.35561 | 0.106942 |

C $\quad 2.23635-0.353942-0.135843$

| H | 5.05712 | 1.31169 | -0.558064 |
| :--- | :--- | :--- | :--- |

H $\quad 4.29173$ 0.409411 -1.88464
H $\quad 2.0336$-0.875145 -1.08216
C $\quad 1.94952 \quad 1.12441 \quad-0.411112$
O $\quad 0.90815 \quad 1.72394 \quad-0.281592$

| O | 1.49142 | -0.899341 | 0.909617 |
| :--- | :--- | :--- | :--- |

H $\quad 0.614965-1.15971 \quad 0.571828$

| O | 3.06271 | 1.72254 | -0.859843 |
| :--- | :--- | :--- | :--- |

C $\quad 4.08068 \quad 0.041229 \quad 1.55605$

| H | 3.6762 | -0.691927 | 2.25012 |
| :--- | :--- | :--- | :--- |


| H | 5.161 | 0.09265 | 1.69536 |
| :--- | :--- | :--- | :--- |


| H | 3.65955 | 1.01303 | 1.81631 |
| :--- | :--- | :--- | :--- |

C $\quad 4.41583-1.69002 \quad-0.245941$
$\begin{array}{llll}\mathrm{H} & 4.0522 & -2.47509 & 0.416512\end{array}$
$\begin{array}{llll}\mathrm{H} & 4.19674 & -1.98495 & -1.27312\end{array}$
H $\quad 5.49962-1.63378 \quad-0.132546$
C $\quad-4.16749 \quad-0.767299 \quad-0.863234$
$\begin{array}{llll}\text { C } & -3.76002 & 0.355592 & 0.106759\end{array}$
$\begin{array}{llll}\text { C } & -2.23632 & 0.353971 & -0.135873\end{array}$
H $\quad-5.05709-1.31145 \quad-0.558955$
H $\quad-4.29155-0.408726-1.88514$
H $\quad-2.03347$ 0.875501 -1.08199
C $\quad-1.9495-1.12429 \quad-0.41163$
O $\quad-0.908155-1.72389 \quad-0.282224$
$\begin{array}{llll}\text { O } & -1.49148 & 0.898989 & 0.90985\end{array}$
H $\quad-0.615004 \quad 1.15948 \quad 0.572225$
$\begin{array}{llll}\text { O } & -3.06266 & -1.72224 & -0.860676\end{array}$
C $\quad-4.08084 \quad-0.041743 \quad 1.5557$
$\begin{array}{llll}\mathrm{H} & -3.67642 & 0.691167 & 2.25007\end{array}$
H $\quad-5.16118$-0.093195 1.69487
$\begin{array}{llll}\mathrm{H} & -3.65975 & -1.01364 & 1.81567\end{array}$
C $\quad-4.41576 \quad 1.69015 \quad-0.245726$
$\begin{array}{llll}\mathrm{H} & -4.05216 & 2.47497 & 0.417032\end{array}$
H $\quad-4.19656 \quad 1.98541 \quad-1.27278$
H $\quad-5.49956 \quad 1.6339 \quad-0.132453$

References
1 MacroModel, Maestro Version 10.2.010, MMshare Version 3.0.010, Release 2015-2, Schrödinger, LLC, New York, NY, 2014.
2 M. Goldsmith, N. Jayasuriya, D. N. Beratan, P. Wipf, J. Am. Chem. Soc. 2003, 125, 15696.

3 S. Grimme, J. Computational Chem., 27 (2006) 1787.
4 Y. Zhao and D. G. Truhlar, Theor. Chem. Acc., 120 (2008) 215.

