Supplementary materials for the manuscript

Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes

Chen Haomin, Chen Maohua and Stefan Adams

1. Program calculating critical reaction from inputted formation energies

The windows command line version of program and its source code is zipped and stored in another supplementary material "critical_reaction_v0.1-cmd.zip". To use the program, unzip the file and execute file "critical reaction v0.1.exe" from command line by:

> critical_reaction_v0.1.exe sample.txt

where "sample.txt" can be replaced by any other text file containing correctly formatted input. Results will be displayed in the console output.

To get instructions on how to prepare sample input:

> critical_reaction_v0.1.exe -h

To generate a sample input file (which is also included as "sample.txt" by default):

> critical_reaction_v0.1.exe -s

Binaries on other platforms can be compiled from "critical_reaction_v0.1.c" if properly linking to GLPK libraries (version 4.55 or above). Or you may write to us for binaries on Linux platforms.

2. Scaling formulas for conversion of site energy barriers to predicted activation energies

Table S1 Scaling formulas used in calculating activation energies for mobile cations in various systems.

e	e
System	Scaling formula
Default	$E = 0.5 \times E_{unscaled}$
Li-O	$E = 0.479 \times E_{unscaled}$
Li-S	$E = 0.535 \times E_{unscaled}$
Cu-S	$E = 0.516 \times E_{unscaled}$
Na-S	$E = 0.415 \times E_{unscaled}^{2/3}$

3. Structural stability

The following tables provide detailed results of the structural stability calculations dicussed in the manuscript. **Table S2** Structural stability of $Li_{12-m-x}M^{m+}S_{6-x}X_x$ (in units of eV/atom) as shown in Fig. 2.

y 12 x	on n(/
X	0	1	2
M=Si, X=Cl, argyrodite	-0.022	-0.013	-0.102
M=Si, X=Br, argyrodite	-0.022	-0.001	-0.067
M=Si, X=I, argyrodite	-0.022	0.002	-0.048
M=Ge, X=Cl, argyrodite	-0.029	-0.023	-0.115
M=Ge, X=Br, argyrodite	-0.029	-0.011	-0.076
M=Ge, X=I, argyrodite	-0.029	-0.006	-0.052
M=Sn, X=Cl, argyrodite	-0.058	-0.043	-0.143
M=Sn, X=Br, argyrodite	-0.058	-0.035	-0.093
M=Sn, X=I, argyrodite	-0.058	-0.030	-0.058
M=Si, X=Cl, NaHg ₂	-0.074	-0.056	-0.008
M=Si, X=Br, NaHg ₂	-0.074	-0.047	-0.008
M=Si, X=I, NaHg ₂	-0.074	-0.060	-0.035
M=Ge, X=Cl, NaHg ₂	-0.078	-0.062	-0.014

M=Ge, X=Br, NaHg ₂	-0.078	-0.046	-0.013
M=Ge, X=I, NaHg ₂	-0.078	-0.064	-0.036
M=Sn, X=Cl, NaHg ₂	-0.067	-0.082	-0.029
M=Sn, X=Br, NaHg ₂	-0.067	-0.066	-0.024
M=Sn, X=I, NaHg ₂	-0.067	-0.084	-0.032
M=P, X=Cl, argyrodite	-0.026	-0.026	-0.032
M=P, X=Br, argyrodite	-0.026	-0.030	-0.031
M=P, X=I, argyrodite	-0.026	-0.018	-0.043
M=As, X=Cl, argyrodite	-0.038	-0.037	-0.047
M=As, X=Br, argyrodite	-0.038	-0.035	-0.036
M=As, X=I, argyrodite	-0.038	-0.022	-0.044
M=P, X=Cl, NaHg2	-0.072	-0.033	-0.033
M=P, X=Br, NaHg2	-0.072	-0.031	-0.032
M=P, X=I, NaHg2	-0.072	-0.041	-0.044
M=As, X=Cl, NaHg2	-0.077	-0.042	-0.043
M=As, X=Br, NaHg2	-0.077	-0.041	-0.038
M=As, X=I, NaHg2	-0.077	-0.047	-0.044

Table S3 Structural stability of $A_{7-x}PS_{6-x}X_x$ (in units of eV/atom) as shown in Fig. 10.

X	0	1	2
A=Li, X=Cl, argyrodite	-0.026	-0.026	-0.032
A=Li, X=Br, argyrodite	-0.026	-0.030	-0.031
A=Li, X=I, argyrodite	-0.026	-0.018	-0.043
A=Na, X=Cl, argyrodite	-0.028	-0.043	-0.051
A=Na, X=Br, argyrodite	-0.028	-0.047	-0.056
A=Na, X=I, argyrodite	-0.028	-0.039	-0.046
A=Cu, X=Cl, argyrodite	-0.053	-0.018	-0.013
A=Cu, X=Br, argyrodite	-0.053	-0.021	-0.017
A=Cu, X=I, argyrodite	-0.053	-0.028	-0.051
A=Li, X=Cl, NaHg ₂	-0.072	-0.033	-0.033
A=Li, X=Br, NaHg ₂	-0.072	-0.031	-0.032
A=Li, X=I, NaHg ₂	-0.072	-0.041	-0.044
A=Na, X=Cl, NaHg ₂	-0.057	-0.024	-0.042
A=Na, X=Br, NaHg ₂	-0.057	-0.020	-0.037
A=Na, X=I, NaHg ₂	-0.057	-0.021	-0.032
A=Cu, X=Cl, NaHg ₂	-0.101	-0.068	-0.023
A=Cu, X=Br, NaHg ₂	-0.101	-0.076	-0.041
A=Cu, X=I, NaHg ₂	-0.101	-0.084	-0.079

Table S4 Structural stability of $Li_{7-x}PY_{6-x}X_x$ (in units of eV/atom) as shown in Fig. 14.

X	0	1	2
Y=O, X=Cl, argyrodite		-0.009	
Y=O, X=Br, argyrodite		0.006	
Y=S, X=Cl, argyrodite	-0.026	-0.026	-0.032
Y=S, X=Br, argyrodite	-0.026	-0.030	-0.031
Y=S, X=I, argyrodite	-0.026	-0.018	-0.043
Y=Se, X=Cl, argyrodite	-0.031	-0.043	-0.040
Y=Se, X=Br, argyrodite	-0.031	-0.037	-0.032
Y=Se, X=I, argyrodite	-0.031	-0.039	-0.041
Y=Te, X=Cl, argyrodite	-0.087	-0.103	-0.103
Y=Te, X=Br, argyrodite	-0.087	-0.089	-0.093
Y=Te, X=I, argyrodite	-0.087	-0.093	-0.095
Y=S, X=Cl, NaHg ₂	-0.072	-0.033	-0.033

Y=S, X=Br, NaHg ₂	-0.072	-0.031	-0.032
Y=S, X=I, NaHg ₂	-0.072	-0.041	-0.044
Y=Se, X=Cl, NaHg ₂	-0.067	-0.043	-0.042
Y=Se, X=Br, NaHg ₂	-0.067	-0.036	-0.035
Y=Se, X=I, NaHg ₂	-0.067	-0.039	-0.041
Y=Te, X=Cl, NaHg ₂	-0.103	-0.116	-0.116
Y=Te, X=Br, NaHg ₂	-0.103	-0.104	-0.105
Y=Te, X=I, NaHg ₂	-0.103	-0.096	-0.107

Table S5 Structural stability of $Li_{12\text{-m-x}}M^{m+}S_{6\text{-x}}X_x$ (in units of eV/atom) as a function of degree of anion site-inversion as shown in Fig. 3, 11 and 15.

11 and 15.				-	
	0%	25%	50%	75%	100%
Li ₆ PS ₅ Cl	-0.081	-0.026	-0.032	-0.047	-0.265
Li ₆ PS ₅ Br	-0.049	-0.030	-0.030	-0.051	-0.278
Li ₆ PS ₅ I	-0.020	-0.018	-0.034	-0.059	-0.314
Li ₆ AsS ₅ Cl	-0.088	-0.037	-0.040	-0.057	-0.276
Li ₆ AsS ₅ Br	-0.055	-0.036	-0.035	-0.056	-0.282
Li ₆ AsS ₅ I	-0.025	-0.022	-0.035	-0.059	-0.302
Li7SiS2Cl	-0.013	-0.021	-0.023	-0.018	-0.013
Li7SiS5Br	-0.001	-0.011	-0.020	-0.015	-0.010
Li ₇ SiS ₅ I	0.002	-0.011	-0.018	-0.016	-0.013
Li7GeS5Cl	-0.023	-0.031	-0.036	-0.026	-0.024
Li7GeS5Br	-0.011	-0.021	-0.025	-0.025	-0.015
Li7GeS5I	-0.006	-0.019	-0.024	-0.023	-0.019
Li ₇ SnS ₅ Cl	-0.054	-0.059	-0.046	-0.051	-0.043
Li ₇ SnS ₅ Br	-0.038	-0.045	-0.035	-0.039	-0.037
Li ₇ SnS ₅ I	-0.030	-0.041	-0.043	-0.041	-0.031
Na ₆ PS ₅ Cl	-0.110	-0.043	-0.054	-0.063	-0.253
Na ₆ PS ₅ Br	-0.082	-0.060	-0.047	-0.058	-0.268
Na ₆ PS ₅ I	-0.049	-0.039	-0.044	-0.075	-0.299
Cu ₆ PS ₅ Cl	-0.032	-0.018	-0.033	-0.047	-0.324
Cu ₆ PS ₅ Br	-0.021	-0.027	-0.030	-0.040	-0.332
Cu ₆ PS ₅ I	-0.028	-0.028	-0.039	-0.051	-0.346
Li ₆ PSe ₅ Cl	-0.118	-0.043	-0.043	-0.055	-0.260
Li ₆ PSe ₅ Br	-0.088	-0.049	-0.037	-0.050	-0.267
Li ₆ PSe ₅ I	-0.055	-0.039	-0.051	-0.051	-0.289
Li ₆ PTe ₅ Cl	-0.234	-0.103	-0.104	-0.116	-0.289
Li ₆ PTe ₅ Br	-0.196	-0.089	-0.097	-0.110	-0.289
Li ₆ PTe ₅ I	-0.159	-0.093	-0.099	-0.106	-0.303
Li ₆ PO ₅ Cl	-0.009	-0.388	-0.621	-0.933	-0.457
Li ₆ PO ₅ Br	0.006	-0.315	-0.322	-0.993	-1.327

Table S6 Structural stability of Li_6PS_5Br four-fold supercell (in units of eV/atom) as a function of degree of anion site-inversion as shown by open triangles in Fig. 3(a).

Site-inversion	Dissociation energy
0.00%	-0.049
6.25%	-0.017
12.50%	-0.021
18.75%	-0.019
25.00%	-0.023
31.25%	-0.022
37.50%	-0.026
43.75%	-0.027

-0.031
-0.031
-0.034
-0.032
-0.034
-0.037
-0.032
-0.030
-0.279

4. Hydrolysis stability

 $\label{eq:table_stability} \textbf{Table S7} \ \text{Hydrolysis stability of } Li_{12\text{-m-x}}M^{m+}S_{2\text{-x}}X_x \ (\text{in units of eV/atom}) \ \text{as shown in Fig. 4}.$

	Li ₇ MS ₆	Li ₆ MS ₅ Cl	Li ₆ MS ₅ Br	Li ₆ MS ₅ I	Li ₅ MS ₄ Cl ₂	Li ₅ MS ₄ Br ₂	$Li_5MS_4I_2$
M=P	-0.324	-0.303	-0.306	-0.295	-0.284	-0.283	-0.295
M=As	-0.166	-0.131	-0.130	-0.116	-0.101	-0.090	-0.098
M=Si	-0.292	-0.262	-0.250	-0.246	-0.326	-0.290	-0.272
M=Ge	-0.161	-0.123	-0.111	-0.106	-0.178	-0.139	-0.116
M=Sn	-0.198	-0.152	-0.144	-0.139	-0.216	-0.166	-0.131

Table S8 Hydrolysis stability of A_{7-x}PS_{6-x}X_x (in units of eV/atom) as shown in Fig. 12.

	3 3	5				/	e
	A ₇ PS ₆	A ₆ PS ₅ Cl	A ₆ PS ₅ Br	A ₆ PS ₅ I	$A_5PS_4Cl_2$	$A_5PS_4Br_2$	$A_5PS_4I_2$
A=Li	-0.324	-0.303	-0.306	-0.295	-0.284	-0.283	-0.295
A=Na	-0.142	-0.165	-0.169	-0.161	-0.182	-0.187	-0.177
A=Cu	-0.053	-0.018	-0.021	-0.028	-0.013	-0.017	-0.051

Table S9 Hydrolysis stability of $Li_{7-x}PY_{6-x}X_x$ (in units of eV/atom) as shown in Fig. 16.

	5	5 5	7 11 0			/	0
	Li ₇ PY ₆	Li ₆ PY ₅ Cl	Li ₆ PY ₅ Br	Li ₆ PY ₅ I	Li ₅ PY ₄ Cl ₂	Li ₅ PY ₄ Br ₂	Li ₅ PY ₄ I ₂
Y=S	-0.324	-0.303	-0.306	-0.295	-0.284	-0.283	-0.295
Y=Se	-0.322	-0.316	-0.311	-0.313	-0.293	-0.285	-0.294
Y=Te	-0.590	-0.553	-0.540	-0.543	-0.492	-0.483	-0.485
Y=O		-0.106	-0.092				

5. Activation energy

 $\label{eq:constraint} \textbf{Table S10} \ Activation \ energy \ for \ Li^+ \ migration \ in \ Li_{12\text{-m-x}} M^{m+} S_{2\text{-x}} X_x \ (in \ units \ of \ eV) \ as \ shown \ in \ Fig. 5.$

Х	0	1	2
M=Si, X=Cl, argyrodite	0.318	0.243	0.602
M=Si, X=Br, argyrodite	0.318	0.256	0.714
M=Si, X=I, argyrodite	0.318	0.441	0.827
M=Ge, X=Cl, argyrodite	0.287	0.233	0.597
M=Ge, X=Br, argyrodite	0.287	0.265	0.720
M=Ge, X=I, argyrodite	0.287	0.334	0.853
M=Sn, X=Cl, argyrodite	0.393	0.243	0.548
M=Sn, X=Br, argyrodite	0.393	0.243	0.736
M=Sn, X=I, argyrodite	0.393	0.286	0.891
M=P, X=Cl, argyrodite	0.302	0.366	0.484
M=P, X=Br, argyrodite	0.302	0.425	0.607
M=P, X=I, argyrodite	0.302	0.527	0.821

M=As, X=Cl, argyrodite	0.340	0.201	0.548
M=As, X=Br, argyrodite	0.340	0.236	0.522
M=As, X=I, argyrodite	0.340	0.457	0.773
M=Si, X=Cl, NaHg ₂	0.209	0.408	0.409
M=Si, X=Br, NaHg ₂	0.209	0.393	0.559
M=Si, X=I, NaHg ₂	0.209	0.495	0.671
M=Ge, X=Cl, NaHg ₂	0.220	0.473	0.404
M=Ge, X=Br, NaHg ₂	0.220	0.393	0.500
M=Ge, X=I, NaHg ₂	0.220	0.499	0.645
M=Sn, X=Cl, NaHg ₂	0.366	0.601	0.361
M=Sn, X=Br, NaHg ₂	0.366	0.542	0.393
M=Sn, X=I, NaHg ₂	0.366	0.564	0.607
M=P, X=Cl, NaHg ₂	0.260	0.227	0.511
M=P, X=Br, NaHg ₂	0.260	0.238	0.586
M=P, X=I, NaHg ₂	0.260	0.291	0.693
M=As, X=Cl, NaHg ₂	0.222	0.286	0.532
M=As, X=Br, NaHg ₂	0.222	0.318	0.570
M=As, X=I, NaHg ₂	0.222	0.334	0.559

Table S11 Activation energy for mobile cation A^+ migration in $A_{7-x}PS_{6-x}X_x$ (in units of eV) as shown in Fig. 13.

х	0	1	2
A=Li, X=Cl, argyrodite	0.302	0.366	0.484
A=Li, X=Br, argyrodite	0.302	0.425	0.607
A=Li, X=I, argyrodite	0.302	0.527	0.821
A=Na, X=Cl, argyrodite	0.326	0.246	0.341
A=Na, X=Br, argyrodite	0.326	0.267	0.344
A=Na, X=I, argyrodite	0.326	0.300	0.402
A=Cu, X=Cl, argyrodite	0.302	0.441	0.529
A=Cu, X=Br, argyrodite	0.302	0.446	0.555
A=Cu, X=I, argyrodite	0.302	0.446	0.581
A=Li, X=Cl, NaHg ₂	0.260	0.227	0.511
A=Li, X=Br, NaHg ₂	0.260	0.238	0.586
A=Li, X=I, NaHg ₂	0.260	0.291	0.693
A=Na, X=Cl, NaHg ₂	0.356	0.263	0.410
A=Na, X=Br, NaHg ₂	0.356	0.303	0.427
A=Na, X=I, NaHg ₂	0.356	0.341	0.480
A=Cu, X=Cl, NaHg ₂	0.242	0.177	0.286
A=Cu, X=Br, NaHg ₂	0.242	0.198	0.322
A=Cu, X=I, NaHg ₂	0.242	0.234	0.400

Table S12 Activation energy for Li^+ migration in $Li_{7-x}PY_{6-x}X_x$ (in units of eV) as shown in Fig. 17.

Х	0	1	2
Y=0, X=Cl		0.529	
Y=O, X=Br		0.611	
Y=S, X=Cl	0.302	0.366	0.484
Y=S, X=Br	0.302	0.425	0.607
Y=S, X=I	0.302	0.527	0.821
Y=Se, X=Cl, argyrodite	0.438	0.178	0.478
Y=Se, X=Br, argyrodite	0.438	0.208	0.438

Y=Se, X=I, argyrodite	0.438	0.288	0.493
Y=Te, X=Cl, argyrodite	0.533	0.233	0.493
Y=Te, X=Br, argyrodite	0.533	0.208	0.448
Y=Te, X=I, argyrodite	0.533	0.233	0.628
M=P, X=Cl, NaHg ₂	0.260	0.227	0.511
M=P, X=Br, NaHg ₂	0.260	0.238	0.586
M=P, X=I, NaHg ₂	0.260	0.291	0.693
Y=Se, X=Cl, NaHg ₂	0.378	0.368	0.432
Y=Se, X=Br, NaHg ₂	0.378	0.352	0.613
Y=Se, X=I, NaHg ₂	0.378	0.337	0.471
Y=Te, X=Cl, NaHg ₂	0.533	0.828	0.346
Y=Te, X=Br, NaHg ₂	0.533	0.863	0.477
Y=Te, X=I, NaHg ₂	0.533	0.818	0.624

Table S13 Activation energy for Li^+ migration in Li_6PS_5Br four-fold supercell (in units of eV) as a function of degree of anion site-inversion as shown in Fig. 6.

Site-inversion	1D	2D	3D
0.00%	0.431	0.431	0.431
6.25%	0.490	0.500	0.500
12.50%	0.554	0.554	0.570
18.75%	0.463	0.580	0.580
25.00%	0.527	0.613	0.623
31.25%	0.543	0.570	0.580
37.50%	0.516	0.554	0.559
43.75%	0.484	0.511	0.570
50.00%	0.409	0.441	0.447
56.25%	0.447	0.516	0.591
62.50%	0.490	0.564	0.570
68.75%	0.538	0.554	0.580
75.00%	0.548	0.602	0.623
81.25%	0.554	0.575	0.602
87.50%	0.607	0.607	0.639
93.75%	0.548	0.570	0.591
100.00%	0.415	0.415	0.415