Interplay of Donor-acceptor Interactions in Stabilizing Boron Nitride Compounds: Insights from Theory

Mohammad R. Momeni, Lisa Shulman, Eric Rivard,* and Alex Brown*

Department of Chemistry, University of Alberta, Edmonton, Alberta, T6G 2G2 Canada

E-mail: erivard@ualberta.ca; alex.brown@ualberta.ca

Isolated (BN)_n (n = 1-3) Molecules

Isolated BN is a challenging system as the lowest singlet and triplet states both have multireference character and are nearly isoenergetic;^{1–3} the triplet state has been determined experimentally to be more stable by 0.71 ± 0.09 kcal/mol.^{4,5} The M05-2X/cc-pVTZ singlettriplet gap is overestimated at 21.7 kcal/mol (with the triplet state as more stable) but this is in keeping with most DFT methods and also many ab initio approaches. However, the present work is focused on electronic and structural characterization of the singlet complexes rather than relative singlet-triplet energetics of the isolated species. For example, our computed M05-2X/cc-pVTZ bond lengths in the triplet and singlet states (1.315 Å and 1.261 Å, respectively) agree well with high-level CCSD(T)/aug-cc-pVQZ results of 1.329 Å and 1.270 Å.

Xu *et al.* have previously studied the singlet and triplet potential energy surfaces (PESs) of linear and cyclic B_2N_2 isomers by means of the coupled cluster CCSD method with the

^{*}To whom correspondence should be addressed

aug-cc-pVTZ basis set.⁶ Cui *et al.* have recently examined the B_2N_2 isomers with CCSD(T) single point computations based on DFT geometries.⁷ We will compare our results to the energies and geometries determined by Xu et al. as the relative stability of the linear isomers is strongly dependent on the electronic structure method used.^{7–10} For all the B_2N_2 isomers studied, the triplet states were found to be more stable than their corresponding singlet electronic arrangements; cyclic B_2N_2 and linear BNBN in their triplet states being the two lowest energy structures and nearly isoenergetic.^{6,7} Cyclic B₂N₂ and linear BNBN will be the two B_2N_2 isomers considered in our study, where upon complexation they undergo spinforbidden process to form the singlet complex. On the triplet PES, the cyclic isomer is 1.0 kcal/mol (-0.3 kcal/mol) more stable than the linear form at the M05-2X/cc-pVTZ (CCSD/aug-cc-pVTZ) level of theory. On the singlet PES, the cyclic planar four-membered ring with D_{2h} symmetry is most stable and the linear $C_{\infty v}$ symmetric BNBN molecule is 25.1 kcal/mol higher in energy. The linear isomer with BNBN connectivity is 14.7, 20.9, and 46.6 kcal/mol more stable than the BNNB, NBBN, and BBNN isomers, respectively. They also concluded on the basis of short transannular B–B distances that a B–B bond exists within the singlet B_2N_2 heterocycle. Overall, our M05-2X/cc-pVTZ optimized geometries of linear BNBN and the D_{2h} symmetric B_2N_2 rings are in reasonable agreement with the CCSD geometries determined by Xu et al. (Figure S1). However, singlet BNBN was found to adopt C_s symmetry as a global minimum instead of the reported $C_{\infty v}$ symmetry, with the former geometry being 6.3 kcal/mol more stable than the latter at the M05-2X/cc-pVTZ level of theory. The calculated B-N bond lengths of the BNBN isomer at the M05-2X/cc-pVTZ level of theory (CCSD/aug-cc-pVTZ values in parentheses), with C_s ($C_{\infty v}$) symmetries, are 1.339 (1.397), 1.318 (1.289), and 1.332 (1.381) Å, respectively. The corresponding B-N bonds within the cyclic isomer B_2N_2 are each 1.392 (1.403) Åwith a computed cross-ring $B \cdots B$ distance of 1.483 (1.491) Å. Additionally, the computed singlet-triplet gap (ΔE_{S-T}) value for the B_2N_2 molecule at the CCSD/aug-cc-pVTZ (20.0 kcal/mol) level of theory compares well with the ΔE_{S-T} value of 13.2 kcal/mol obtained using M05-2X/cc-pVTZ; the corresponding M05-2X (CCSD) ΔE_{S-T} values for the BNBN molecule are 40.1 (46.6) kcal/mol.

For B_3N_3 , only the singlet isomer has been considered as all other isomers (regardless of spin-state) are significantly higher in energy;^{8,11} for example, linear BNBNBN in its triplet state is 75.2 kcal/mol higher in energy than the cyclic isomer in its singlet state at the CCSD(T)/cc-pVDZ level of theory.¹¹ The B–N bond lengths in B_3N_3 are determined in the present M05-2X/cc-pVTZ study to be 1.354 Å; this is within 0.03 Å of the 1.3763 Å computed by Martin *et al.*¹¹ at the CCSD(T)/cc-pVDZ level of theory. The M05-2X/cc-pVTZ computed B–N bond lengths in singlet cyclo- B_3N_3 decrease on average by 0.038 Å in relation to the intraring B–N distances in singlet cyclo- B_2N_2 ; this suggests a greater degree of B–N intraring resonance stabilization within B_3N_3 in relation to the B_2N_2 , as later determined by NICS computations (see Table S1).

Overall, the optimized M05-2X/cc-pVTZ geometries and relative energies of the isolated $(BN)_n$ (n = 1 - 3) are in good agreement with available coupled cluster data, and hence we chose to conduct the remaining computations using the M05-2X/cc-pVTZ level of theory.

Comparison of M05-2X/cc-pVTZ and BP86/TZ2P Geometries

BP86/TZ2P optimized geometries show slightly (0.003-0.009 Å) shorter C–B and longer (0.001-0.029 Å) carbene attached B–N bonds compared to the geometries obtained by M05-2X. In the ImMe₂CH₂ and Me₃PCH₂ substituted adducts, the C–B and B–N bonds determined using BP86/TZ2P are 0.002-0.016 Å and 0.007-0.020 Å longer, respectively, than those determined using M05-2X/cc-pVTZ. Except in the case of the ImMe₂CH₂·BNBN and ImMe₂CH₂·B₃N₃ adducts, all the other BP86 optimized C-CH₂ and P-CH₂ ylidic bonds are 0.007-0.015 Å longer than the bond lengths obtained via M05-2X (coordinates of all optimized structures are presented in Tables S10 and S11).

Table S1: Calculated NICS Values of the B_2N_2 and B_3N_3 Rings of the Studied Complexes at the M05-2X/cc-pVTZ Level of Theory. The Corresponding Values Are Computed for Benzene (C₆H₆) and Cyclobutadiene (C₂H₄) as Aromatic and Anti-aromatic Molecules, Respectively.

Species	NICS (0.0)	NICS $(0.0)_{zz}$	NICS (1.0)	NICS $(1.0)_{zz}$
B_2N_2	-44.50	-73.09	-6.28	-15.12
B_3N_3	-9.88	-7.04	-2.64	-6.51
C_2H_4	+33.58	+127.38	+20.85	+65.77
C_6H_6	-7.41	-16.09	-10.56	-31.06
ImMe ₂ ·B ₂ N ₂	-11.03	-12.79	+1.29	+8.46
$(\mathrm{ImMe}_2)_2 \cdot \mathbf{B}_2 \mathbf{N}_2$	+6.06	+36.05	+5.13	+13.74
ImMo, B.N.	-6.24	± 1.02	_3 59	_7 43
$(\text{ImMe}_2) \cdot \text{B}_1 \text{N}_2$	0.24 3.61	+1.02	3.02	7.45 8.55
$(\operatorname{ImMe}_2)_2 \cdot \operatorname{D}_3 \operatorname{N}_3$ $(\operatorname{ImMe}_2)_2 \cdot \operatorname{B}_3 \operatorname{N}_3$	-3.01	+2.42	-3.92	-0.00
(111111122)3•D3113	-1.02	-4.90	-3.91	-2.02
$\mathrm{Im}\mathrm{Me}_{2}\mathrm{CH}_{2}{\cdot}\mathrm{B}_{2}\mathrm{N}_{2}$	-12.82	+25.83	+0.47	+8.60
$(\mathrm{Im}\mathrm{Me}_{2}\mathrm{CH}_{2})_{2}{\cdot}\mathrm{B}_{2}\mathrm{N}_{2}$	+4.42	+22.52	+3.06	+9.04
ImMe ₂ CH ₂ ·B ₃ N ₃	-5.67	-11.08	-3.12	-0.20
$(ImMe_2CH_2)_2 \cdot B_3N_3$	-3.56	+1.50	-3.87	-3.19
$(ImMe_2CH_2)_3 \cdot B_3N_3$	-1.96	+2.45	-3.71	-2.37
M. DOIL D.N.	19.07	10 71	1 1 7	
$Me_3PCH_2 \cdot B_2N_2$	-13.87	-19.71	-1.17	+2.55
$(Me_3PCH_2)_2 \cdot B_2N_2$	+7.07	+36.58	+3.67	+12.62
$Me_3PCH_2 \cdot B_3N_3$	-6.15	+1.42	-3.31	-6.95
$(Me_3PCH_2)_2 \cdot B_3N_3$	-2.92	+5.36	-3.16	-6.39
$(Me_3PCH_2)_3 \cdot B_3N_3$	-0.91	+4.71	-3.78	-3.37

Table S2: NBO Analysis for the Ligands at the M05-2X/cc-pVTZ Level of Theory

Species	NBO Charge	Bond A-B	Occ	(A) %	Hyb (A)	(B) %	Hyb (B)	WBI
ImMe ₂								
C_{2v}	C 0.070 N1 -0 393	$C-N_1(\sigma)$ $C-N_1(\pi)$	1.979 1.865	33.6	$p^{2.70}$	$66.4 \\ 80.5$	$sp^{1.82}$ $p^{1.00}$	1.258
	$N_1 = 0.393$ $N_2 = 0.393$	C (LP)	1.921	-	$sp^{1.11}$	-	Р -	-
		$N_2 (LP)$	1.571	-	p ^{1.00}	-	-	-
$\mathrm{Im}\mathrm{Me}_{2}\mathrm{CH}_{2}$								
C_{2v}	C 0.366	C-N (σ)	1.979	38.6	$\mathrm{sp}^{2.51}$	61.4	$\mathrm{sp}^{2.00}$	1.091
	$C(H_2)$ -0.722	$C-C(H_2)(\sigma)$	1.982	53.1	$\mathrm{sp}^{1.32}$	46.9	$\mathrm{sp}^{1.71}$	1.613
	N -0.384	$C-C(H_2)(\pi)$	1.988	37.3	$p^{1.00}$	62.7	$p^{1.00}$	
		N (LP)	1.662	-	p ^{1.00}	-	-	-
${\rm Me_3PCH_2}$					1.05		0.00	
C_s	P 1.567 C(H ₂) -1.268	$P-C(H_2)(\sigma)$ $C(H_2)(LP)$	1.987 1.700	43.7	$sp^{1.97}$ $sp^{19.69}$	56.3 -	sp ^{2.02}	1.328
	0(112) 11200	(11 ₂) (11)	100		~1~			

Table S3: NBO Analysis for the BN Systems at the M05-2X/cc-pVTZ Level of Theory. Wih the Exception of the Cyclic C=C Bond in the $ImMe_2$ and $ImMe_2CH_2$ Containing Complexes, All Other Double Bonds Have Been Omitted for Simplicity from the Above and Following Figures.

Species	NBO Charge	Bond A-B	Occ	(A) %	Hyb (A)	(B) %	Hyb (B)	WBI
BN (singlet) C	B 0 861	$B_{-}N(\sigma)$	1 985	15.9	sp6.70	84.8	50.01	3 012
$\cup_{\infty v}$	N -0.861	$ B-N(\sigma_1) $	2.000	28.8	$p^{1.00}$	71.2	$p^{1.00}$	0.012
		$\begin{array}{l} \text{B-N} (\pi_2) \\ \text{B-N}(\pi_3) \end{array}$	$2.000 \\ 1.975$	$28.8 \\ 33.0$	$p^{1.00} sp^{0.18}$	$71.2 \\ 67.0$	$p^{1.00} sp^{99.99}$	
BN (triplet)							1.24	
$C_{\infty v}$	В 0.677 N -0.677	$ B-N(\alpha)(\sigma) B-N(\alpha)(\pi_1) $	$1.000 \\ 1.000$	$23.9 \\ 25.6$	$p^{2.18}$ $p^{1.00}$	$76.1 \\ 74.4$	$p^{1.34}$ $p^{1.00}$	0.546
		$B-N(\alpha)(\pi_2)$	1.000	21.1	$p^{1.00}$	78.9	$p^{1.00}$	
		$\begin{array}{l} \mathrm{B} \ (\alpha) \ (\mathrm{LP}) \\ \mathrm{N} \ (\alpha) \ (\mathrm{LP}) \end{array}$	$0.997 \\ 0.996$	-	$\mathrm{sp}^{0.42}$ $\mathrm{sp}^{0.73}$	-	-	-
		B-N $(\beta)(\sigma)$	1.000	23.6	$p^{1.00}$	76.4	$p^{1.00}$	0.449
			0.950	32.9 -	$\mathrm{sp}^{0.27}$	- 07.1	spolos	-
$\mathrm{Im}\mathrm{Me}_2\cdot \mathrm{BN}$								
C_{2v}	B 0.230	B-N ₁ (σ) B N ₁ (π_1)	1.994 1.963	30.0 37.6	${ m sp}^{1.05}$	70.0 62.4	$sp^{0.69}$ $p^{1.00}$	2.622
	C 0.203	B-N ₁ (π_1) B-N ₁ (π_2)	1.903 1.892	39.1	p $p^{1.00}$	60.9	p $p^{1.00}$	
	$N_2 - 0.297$	B-C (σ)	1.969	32.2	$sp^{0.95}$	67.8	$sp^{1.39}$	0.944
	$N_3 = 0.297$	$C-N_2(\sigma)$ $C-N_2(\pi)$	1.981 1.875	38.2 26.1	$p^{1.00}$	$01.8 \\ 73.9$	$p^{1.00}$	1.200
		$C-N_3(\sigma)$	1.981	38.2	$sp^{2.42}$	61.8	${}^{1.90}$	1.266
		N_1 (LP) N_2 (LP)	1.966 1.525	-	$sp^{1.43}$ $p^{1.00}$	-	-	-
		143 (171.)	1.040	-	Ч	-	-	-

Species	NPO Charge	Bond	$O_{\alpha\alpha}$	(\mathbf{A})	Hyb	(B)	Hyb	WDI
Species	NDO Charge	A-B	Occ	%	(\mathbf{A})	%	(B)	W DI
$ImMe_2CH_2 \cdot BN$								
C_1	B 0.367	B-N ₁ (σ)	1.988	34.1	$\mathrm{sp}^{0.91}$	65.9	$\mathrm{sp}^{2.84}$	2.656
	$N_1 - 0.887$	B-N ₁ (π_1)	1.974	33.6	$\mathrm{sp}^{99.99}$	66.4	$\mathrm{sp}^{99.99}$	
	$N_2 - 0.320$	B-N ₁ (π_2)	1.959	33.6	$\mathrm{sp}^{99.99}$	66.4	$p^{1.00}$	
	$N_3 - 0.336$	$B-C(H_2)(\sigma)$	1.914	29.0	$sp^{1.14}$	71.0	$\mathrm{sp}^{3.06}$	0.772
	$C(H_2)$ -0.821	$C-N_2(\sigma)$	1.982	39.4	$sp^{2.37}$	60.6	$sp^{1.76}$	1.288
	C 0.523	$C-N_2(\pi)$	1.897	24.4	$p^{1.00}$	75.6	$p^{1.00}$	
		$C-N_3(\sigma)$	1.982	39.1	$sp^{2.38}$	60.9	$sp^{1.74}$	1.271
		N_1 (LP)	1.951	_	$\mathrm{sp}^{0.36}$	-	-	-
		N_3 (LP)	1.575	_	$p^{1.00}$	-	_	-
		- 3 ()			Г			
Me ₃ PCH ₂ · BN								
C_{a}	B 0.382	B-N (σ)	1.995	29.2	$\mathrm{sp}^{1.16}$	70.8	$\mathrm{sp}^{0.65}$	2.604
- 3	N -0.945	B-N (π_1)	1.973	34.4	$p^{1.00}$	65.6	$p^{1.00}$	
	P 1.630	B-N (π_2)	1.955	35.3	$sp^{99.99}$	64.7	$sp^{99.99}$	
	$C(H_{a}) - 1.046$	$B-C(H_{a})(\sigma)$	1 964	30.4	$sp^{0.88}$	69.6	$sp^{2.36}$	0.872
	0(112) 1.010	$P-C(H_2)(\sigma)$	1.961	41.6	$^{\rm SP}_{\rm SD}^{2.66}$	58 4	sp ^{3.34}	0.012
		N(LP)	1.001 1 050	-	5 p $^{1.55}$		ър _	0.500
			1.303	-	ър	-	-	-

Table S4: NBO Analysis for the BNBN Systems at the M05-2X/cc-pVTZ Level of Theory

Species	NBO Charge	Bond A-B	Occ	(A) %	Hyb (A)	(B) %	Hyb (B)	WBI
BNBN (singlet) C_s	${f B_1}\ 0.703 {f B_2}\ 0.879$	$\begin{array}{c} \mathbf{B}_{1} - \mathbf{N}_{1} (\sigma) \\ \mathbf{B}_{1} - \mathbf{N}_{1} (\pi) \end{array}$	$1.951 \\ 1.873$	20.2 11.3	$p^{1.19}$ $p^{1.00}$	79.8 88.7	$p^{1.28}$ $p^{1.00}$	1.230
	$N_1 - 1.214$ $N_2 - 0.368$	$ \begin{array}{c} B_2 - N_1 (\sigma) \\ B_2 - N_1 (\sigma) \end{array} $	1.986 1 774	25.4 17.6	$sp^{1.07}$ $sp^{99.99}$	74.6 82.4	$sp^{1.06}$ $sp^{12.42}$	1.340
	112 0.000	$ \begin{array}{l} B_{2} \cdot N_{1} (\pi) \\ B_{2} \cdot N_{2} (\sigma) \\ B_{2} \cdot N_{2} (\pi) \end{array} $	1.994 1.992	31.7 20.4	$sp^{0.95}$ $p^{1.00}$	68.3 79.6	$sp^{1.58}$ $p^{1.00}$	1.604
		N_2 (LP)	1.977	-	$sp^{0.63}$	-	-	-

				()	TT 1	(D)	TT 1	
Species	NBO Charge	Bond A-B	Occ	(A) %	Hyb (A)	(B) %	Hyb (B)	WBI
\mathbf{DNDN} (to: 1-t)								
C	B 0.045	$\mathbf{P} = \mathbf{N} \cdot (\alpha) \cdot (\boldsymbol{\sigma})$	0.004	10.2	cm1.85	80.7	cm0.87	0 443
\cup_s	$B_1 \ 0.945$ $B_2 \ 0.925$	$B_1 - N_1(\alpha)(\sigma)$ $B_2 - N_2(\alpha)(\pi_1)$	$0.994 \\ 0.967$	19.0 10.5	$p^{1.00}$	80.7 80.5	$p^{1.00}$	0.445
	$M_2 = 0.525$	$B_{1}-N_{1}(\alpha)(\pi_{1})$	0.962	13.0 18.7	$p^{1.00}$	81.3	$p^{1.00}$	
	$N_2 - 0.584$	$B_1 N_1 (\alpha) (\pi_2)$ $B_2 N_1 (\alpha) (\sigma)$	0.994	24.4	$sp^{1.11}$	75.6	$sp^{1.15}$	0.234
	112 01001	$B_2 - N_2(\alpha) (\sigma)$	0.999	30.8	$sp^{0.90}$	69.2	$sp^{1.44}$	0.553
		$B_2 - N_2(\alpha)(\pi_1)$	0.993	21.5	$p^{1.00}$	78.5	$p^{1.00}$	
		$B_2-N_2(\alpha)(\pi_2)$	0.989	25.8	$p^{1.00}$	74.2	$p^{1.00}$	
		$B_1(\alpha)$ (LP)	0.989	-	$\mathrm{sp}^{0.53}$	-	-	-
		$N_2(\alpha)$ (LP)	0.987	-	$\mathrm{sp}^{0.69}$	-	-	-
		$B_1-N_1(\beta)(\sigma)$	0.994	20.3	$\mathrm{sp}^{0.61}$	79.7	$\mathrm{sp}^{0.95}$	0.370
		B ₁ -N ₁ (β) (π_1)	0.964	15.4	$\mathrm{sp}^{99.99}$	84.6	$\mathrm{sp}^{99.99}$	
		$B_1-N_1 (\beta)(\pi_2)$	0.905	12.4	$p^{1.00}$	87.6	$p^{1.00}$	
		$B_2-N_1(\beta)(\sigma)$	0.992	24.2	$sp^{1.14}$	75.8	$sp^{1.05}_{1.20}$	0.276
		$B_2-N_2(\beta)(\sigma)$	0.998	31.8	$sp^{0.91}$	68.2	$sp^{1.39}$	0.416
		$B_2-N_2(\beta)(\pi)$	0.982	29.5	$sp^{99.99}$	70.5	$sp^{99.99}$	
		$N_2(\beta)$ (LP)	0.985	-	spons	-	-	-
ImMes: BNBN								
C_{2n}	$B_1 0.608$	$B_1-N_1(\sigma)$	1.982	25.7	$sp^{1.12}$	74.3	$\mathrm{sp}^{0.88}$	2.062
- 20	$B_2 0.519$	$B_1 - N_1(\pi_1)$	1.941	26.9	$p^{1.00}$	73.1	$p^{1.00}$	
	$N_1 - 0.851$	$B_1 - N_1 (\pi_2)$	1.903	27.5	$p^{1.00}$	72.5	$p^{1.00}$	
	N ₂ -0.829	$B_2-N_1(\sigma)$	1.980	23.8	$sp^{1.17}$	76.2	$sp^{1.14}$	0.915
	$N_3 - 0.281$	$B_2-N_2(\sigma)$	1.990	30.3	$\mathrm{sp}^{0.86}$	69.7	$\mathrm{sp}^{0.84}$	2.431
	$N_4 - 0.281$	$B_2-N_2(\pi_1)$	1.926	33.7	$p^{1.00}$	66.3	$p^{1.00}$	
	C 0.140	$B_2-N_2(\pi_2)$	1.827	35.8	$p^{1.00}$	64.2	$p^{1.00}$	
		B_1 -C (σ)	1.969	33.3	$sp^{0.90}$	66.7	$sp^{1.48}_{1.02}$	0.966
		$C-N_3(\sigma)$	1.982	38.7	$sp^{2.33}$	61.3	$sp^{1.93}_{1.93}$	1.262
		$C-N_4(\sigma)$	1.982	38.7	$sp^{2.00}$	61.3 71.0	$sp^{1.00}$	1.262
		\mathbf{U} - $\mathbf{N}_4(\pi)$	1.873	28.1	p ^{1.00}	71.9	phoo	
		N_2 (LP) N_2 (LP)	1.900 1.513	-	sp $n^{1.00}$	-	-	-
		из (ш.)	1.010	-	р	-	-	-
$ImMe_2CH_2 \cdot BNBN$								
C_1	$B_1 \ 0.838$	$B_1-N_1(\sigma)$	1.986	25.1	$\mathrm{sp}^{1.20}$	74.9	$\mathrm{sp}^{0.86}$	2.018
	$B_2 \ 0.602$	$B_1-N_1(\pi_1)$	1.935	21.7	$\mathrm{sp}^{99.99}$	78.3	$sp^{1.00}$	
	$N_1 - 1.006$	$B_1 - N_1 (\pi_2)$	1.936	24.9	$sp^{99.99}$	75.1	$p_{1.00}^{1.00}$	
	$N_2 - 1.062$	$B_2-N_1(\sigma)$	1.977	23.6	$sp^{1.13}$	76.4	$sp^{1.10}_{0.78}$	0.866
	$N_3 - 0.275$	$B_2-N_2(\sigma)$	1.992	29.4	sp ^{0.50}	70.6	sp ^{0.70}	2.449
	$N_4 - 0.311$	$B_2 - N_2(\pi_1)$	1.957	31.1 91.7	sp ^{55.66}	08.9 69.2	sp ^{50.00}	
	$C(11_2) = 0.794$	$D_2 - N_2(\pi_2)$ B ₁ -C(H ₂)(σ)	1.941 1.054	১৫.7 এই 1	sp 0.85	00.0 66 0	sp ^{2.83}	0 808
	0 0.419	$C-C(H_2)(\sigma)$	1.904 1.965	50.1 50.7	эр sp ^{1.65}	49.3	эр sp ^{2.86}	1.096
		$C-N_3(\sigma)$	1.982	38.8	$sp^{2.17}$	61.2	$sp^{1.88}$	1.315
		$C-N_3(\pi)$	1.886	29.7	$sp^{99.99}$	70.3	$p^{1.00}$	1.010
		$C-N_4(\sigma)$	1.981	38.3	$sp^{2.26}$	61.7	$sp^{1.88}$	1.269
		N_2 (LP)	1.951	-	$sp^{1.32}$	-	-	-
		N_4 (LP)	1.536	-	$p^{1.00}$	-	-	-

	(A)	Hyb	(B)	Hyb	WDI
Occ	%	(A)	%	(B)	WDI
1.986	25.2	$\mathrm{sp}^{1.23}$	74.8	$\mathrm{sp}^{0.86}$	1.997
1.936	25.1	$p^{1.00}$	74.9	$p^{1.00}$	
1.930	20.7	$\mathrm{sp}^{99.99}$	79.3	$\mathrm{sp}^{99.99}$	
1.976	23.7	$\mathrm{sp}^{1.12}$	76.3	$\mathrm{sp}^{1.16}$	0.875
1.992	29.5	$\mathrm{sp}^{0.90}$	70.5	$\mathrm{sp}^{0.80}$	2.406
1.943	29.9	$\mathrm{sp}^{99.99}$	70.1	$\mathrm{sp}^{65.94}$	
1.932	31.6	$p^{1.00}$	68.4	$p^{1.00}$	
1.975	32.5	$\mathrm{sp}^{0.83}$	67.5	$sp^{2.54}$	0.931
1.952	39.1	$sp^{3.15}$	60.9	$sp^{3.21}$	0.906
1.952	-	$sp^{1.31}$	-	-	-
		Ŧ			
	Occ 1.986 1.936 1.930 1.976 1.992 1.943 1.932 1.975 1.952 1.952	$\begin{array}{ccc} (A) \\ \% \\ \hline \\ 1.986 & 25.2 \\ 1.936 & 25.1 \\ 1.930 & 20.7 \\ 1.976 & 23.7 \\ 1.992 & 29.5 \\ 1.943 & 29.9 \\ 1.932 & 31.6 \\ 1.975 & 32.5 \\ 1.952 & 39.1 \\ 1.952 & - \\ \end{array}$	Occ(A) $\%$ Hyb (A)1.98625.2 5.1 $p^{1.00}$ 1.93625.1 25.1 $p^{1.00}$ 1.93020.7 20.7 $sp^{99.99}$ 1.97623.7 23.7 $sp^{1.12}$ 1.99229.5 $59^{0.90}$ 1.94329.9 1.932 $sp^{99.99}$ 1.97532.5 32.5 $sp^{0.83}$ 1.95239.1 $5p^{1.31}$	Occ(A) $\%$ Hyb (A)(B) $\%$ 1.98625.2 $\$^{1.23}$ 74.8 74.9 1.93625.1 $$25.1$ $$p^{1.00}$ 74.9 74.9 1.93020.7 $$sp^{99.99}$ 79.3 79.3 1.97623.7 $$sp^{1.12}$ 76.3 70.5 1.99229.5 $$sp^{0.90}$ 70.5 70.5 1.94329.9 $$sp^{99.99}$ 70.1 70.1 1.93231.6 $$p^{1.00}$ 68.4 68.4 1.97532.5 $$sp^{0.83}$ 67.5 60.9 1.952 1.952- $$sp^{1.31}$ -	$\begin{array}{c cccccc} (A) & Hyb & (B) & Hyb \\ \% & (A) & \% & (B) \\ \end{array}$ $\begin{array}{cccccccccccccccccccccccccccccccccccc$

Table S5: NBO Analysis for $\rm B_2N_2$ and Its Mono-substituted Complexes at the M05-2X/cc-pVTZ Level of Theory

Species	NBO Charge	Bond A-B	Occ	(A) %	Hyb (A)	(B) %	Hyb (B)	WBI
B_2N_2 (singlet) D_{2h}	$\begin{array}{c} B_1 \ 1.069 \\ B_2 \ 1.069 \\ N_1 \ -1.069 \\ N_2 \ -1.069 \end{array}$	$\begin{array}{c} {\rm B_{1}\text{-}N_{1}}\left(\sigma \right) \\ {\rm B_{1}\text{-}N_{2}}\left(\sigma \right) \\ {\rm B_{1}\text{-}N_{2}}\left(\pi \right) \\ {\rm B_{2}\text{-}N_{1}}\left(\sigma \right) \\ {\rm B_{2}\text{-}N_{1}}\left(\pi \right) \\ {\rm B_{2}\text{-}N_{2}}\left(\sigma \right) \\ {\rm N_{1}}\left({\rm LP} \right) \\ {\rm N_{2}}\left({\rm LP} \right) \end{array}$	$\begin{array}{c} 1.853 \\ 1.853 \\ 1.745 \\ 1.853 \\ 1.745 \\ 1.853 \\ 1.853 \\ 1.884 \\ 1.884 \end{array}$	29.3 29.3 12.7 29.3 12.7 29.3	$sp^{1.02} \\ sp^{1.02} \\ p^{1.00} \\ sp^{1.02} \\ p^{1.00} \\ sp^{1.02} \\ sp^{1.08} \\ sp^{1.08} \\ sp^{1.08}$	70.7 70.7 87.3 70.7 87.3 70.7	sp ^{2.81} sp ^{2.81} p ^{1.00} sp ^{2.81} p ^{1.00} sp ^{2.81}	1.221 1.221 1.221 1.221 1.221

Species	NBO Charge	Bond A-B	Occ	(A) %	Hyb (A)	(B) %	Hyb (B)	WBI
B ₂ N ₂ (triplet)								
D_{2h}	$B_1 0.737$	$B_1-N_1(\alpha)(\sigma)$	0.961	33.0	$\mathrm{sp}^{1.03}$	67.0	$\mathrm{sp}^{2.96}$	0.281
210	$B_2 0.737$	$B_1-N_1(\alpha)(\pi)$	0.907	9.2	$p^{1.00}$	90.8	$p^{1.00}$	
	$N_1 - 0.737$	$B_1-N_2(\alpha)(\sigma)$	0.961	33.0	$sp^{1.03}$	67.0	$sp^{2.96}$	0.281
	$N_2 - 0.737$	$B_2 - N_1(\alpha)(\sigma)$	0.961	33.0	$sp^{1.03}$	67.0	$sp^{2.96}$	0.281
	-	$B_2 - N_2(\alpha) (\sigma)$	0.961	33.0	$sp^{1.03}$	67.0	$sp^{2.96}$	0.281
		$B_2-N_2(\alpha)(\pi)$	0.907	9.2	$p^{1.00}$	90.8	$p^{1.00}$	
		$B_1 - B_2(\alpha)(\sigma)$	0.795	50.0	$sp^{16.32}$	50.0	$sp^{16.32}$	0.177
		$N_1(\alpha)$ (LP)	0.982	-	${ m sp}^{1.00}$	-	-	-
		$N_2(\alpha)$ (LP)	0.982	-	$\mathrm{sp}^{1.00}$	-	-	-
		B-N (β) (σ)**	0.949	28.2	$\mathrm{sp}^{1.06}$	71.8	$\mathrm{sp}^{2.71}$	0.290
		$N_1(\beta)$ (LP) (1)	0.962	_	$\mathrm{sp}^{1.14}$	_	-	_
		$N_1(\beta)$ (LP) (2)	0.262	-	$p^{1.00}$	-	-	-
		$N_2(\beta)$ (LP) (1)	0.962	-	$sp^{1.14}$	-	-	-
ImMea ·BaNa								
C_{2n}	$B_1 \ 0.654$	$B_1-N_1(\sigma)$	1.789	31.2	${\rm sp}^{2.06}$	68.8	${\rm sp}^{2.48}$	0.998
0 20	$B_2 0.901$	$B_{1}-N_{1}(\pi)$	1.747	12.2	$p^{1.00}$	87.8	$p^{1.00}$	0.000
	$N_1 - 1.102$	$B_1 - N_2(\sigma)$	1.789	31.2	$sp^{2.06}$	68.8	$sp^{2.48}$	0.998
	$N_2 - 1.102$	$B_2 - N_1(\sigma)$	1.957	30.8	$sp^{1.18}$	69.2	$sp^{2.60}$	1.320
	$N_3 - 0.270$	$B_2 - N_2(\sigma)$	1.957	30.8	$sp^{1.18}$	69.2	$\mathrm{sp}^{2.60}$	1.320
	$N_4 - 0.270$	$B_2-N_2(\pi)$	1.751	12.3	$p^{1.00}$	87.7	$p^{1.00}$	
	$C \ 0.235$	$B_1-C(\sigma)$	1.960	34.1	$\mathrm{sp}^{1.87}$	65.9	$\mathrm{sp}^{1.46}$	0.861
		$C-N_3(\sigma)$	1.982	38.1	$\mathrm{sp}^{2.35}$	61.9	$\mathrm{sp}^{1.89}$	1.304
		C-N ₄ (σ)	1.982	38.1	$\mathrm{sp}^{2.35}$	61.9	$\mathrm{sp}^{1.89}$	1.304
		C-N ₄ (π)	1.871	28.2	$p^{1.00}$	71.8	$p^{1.00}$	
		$N_1 (LP)$	1.929	-	$\mathrm{sp}^{1.27}$	-	-	-
		$N_2 (LP)$	1.929	-	$\mathrm{sp}^{1.27}$	-	-	-
		$N_3 (LP)$	1.486	-	$p^{1.00}$	-	-	-

**B-N represents B_1 -N₁, B_1 -N₂, B_2 -N₁, and B_2 -N₂.

Species	NBO Charge	Bond	Occ	(A)	Hyb	(B)	Hyb	WBI
	112 0 0110180	A-B		%	(A)	%	(B)	
$ImMe_2CH_2 \cdot B_2N_2$			1 - 0 4	22.2	0.10		0.25	0.000
C_s	$B_1 0.783$	$B_1-N_1(\sigma)$	1.784	29.3	$sp^{2.12}$	70.7	$sp^{2.33}$	0.969
	$B_2 \ 0.853$	$B_1-N_2(\sigma)$	1.784	29.3	$sp^{2.10}$	70.7	$sp^{2.30}$	0.969
	$N_1 - 1.129$	$B_1-N_2(\pi)$	1.739	11.6	$sp^{99.99}$	88.4	$sp^{99.99}$	
	$N_2 - 1.129$	$B_2-N_1(\sigma)$	1.956	31.1	$sp^{1.21}$	68.9	$sp^{2.64}$	1.344
	$N_3 - 0.301$	$B_2-N_1(\pi)$	1.761	12.8	$\mathrm{sp}^{99.99}$	87.2	$\mathrm{sp}^{99.99}$	
	$N_4 - 0.301$	B_2 - $N_2(\sigma)$	1.956	31.1	${ m sp}^{1.20}$	68.9	${ m sp}^{2.62}$	1.344
	$C(H_2)$ -0.738	B_1 - $C(H_2)(\sigma)$	1.910	32.6	$\mathrm{sp}^{1.76}$	67.4	$\mathrm{sp}^{2.69}$	0.801
	$C \ 0.509$	$C-C(H_2)(\sigma)$	1.966	51.9	${ m sp}^{1.55}$	48.1	$\mathrm{sp}^{2.96}$	1.059
		C-N ₃ (σ)	1.981	38.4	$\mathrm{sp}^{2.29}$	61.6	$\mathrm{sp}^{1.89}$	1.284
		C-N ₃ (π)	1.880	26.6	$p^{1.00}$	73.4	$\mathrm{sp}^{99.99}$	
		$C-N_4(\sigma)$	1.981	38.4	$\mathrm{sp}^{2.29}$	61.6	$\mathrm{sp}^{1.89}$	1.284
		N_1 (LP)	1.928	-	$\mathrm{sp}^{1.33}$	-	-	-
		N_2 (LP)	1.928	-	$sp^{1.33}$	-	-	-
		N_4 (LP)	1.517	-	$p^{1.00}$	-	-	-
					-			
$Me_3PCH_2 \cdot B_2N_2$								
C_s	$B_1 0.769$	$B_1-N_1(\sigma)$	1.806	30.1	$\mathrm{sp}^{1.87}$	69.9	$\mathrm{sp}^{2.07}$	1.096
Ŭ	B_{2}^{-} 0.860	$B_1 - N_2(\sigma)$	1.757	29.1	$sp^{2.48}$	70.9	$sp^{2.90}$	0.846
	$N_1 - 1.051$	$B_1 - N_2(\pi)$	1.743	8.3	$p^{1.00}$	91.7	$p^{1.00}$	
	$N_2 - 1.202$	$B_2 - N_1(\sigma)$	1.948	31.8	$sp^{1.17}$	68.2	$sp^{2.91}$	1.316
	P 1.637	$B_{2}-N_{1}(\pi)$	1.708	13.5	$p^{1.00}$	86.5	$p^{1.00}$	
	$C(H_2) - 1.037$	$B_2 - N_2(\sigma)$	1.966	30.1	$sp^{1.21}$	69.9	$sp^{2.24}$	1 372
	0(112) 11001	B_1 -C(H ₂) (σ)	1 956	32.1	$sp^{1.74}$	67.9	$sp^{2.36}$	0.840
		$P_{-}C(H_{2})(\sigma)$	1.000	41 4	$sp^{2.69}$	58.6	$sp^{3.06}$	0.964
		N_1 (LP)	1 928	-	$sp^{1.35}$	-	- -	-
		$N_{\rm p}$ (LP)	1 932	_	$sp^{1.28}$	-	_	_
		112 (L11)	1.502		Чч			

Table S6: NBO Analysis for the Di-substituted $\rm B_2N_2$ Complexes at the M05-2X/cc-pVTZ Level of Theory

Species	NBO Charge	Bond A-B	Occ	(A) %	Hyb (A)	(B) %	Hyb (B)	WBI
$(\mathrm{ImMe}_2)_2 \cdot \mathrm{B}_2 \mathrm{N}_2$								
C_{2v}	$B_1 \ 0.676$	$B_1-N_1(\sigma)$	1.880	25.6	${ m sp}^{1.61}$	74.4	$\mathrm{sp}^{2.44}$	1.068
	$B_2 \ 0.676$	$B_1-N_1(\pi)$	1.643	8.8	$\mathrm{sp}^{24.07}$	91.2	$\mathrm{sp}^{46.22}$	
	$N_1 - 1.233$	$B_2-N_1(\sigma)$	1.926	28.5	$\mathrm{sp}^{2.14}$	71.5	$\mathrm{sp}^{2.20}$	1.068
	N ₂ -1.233	B_1 -C (σ)	1.962	32.0	${ m sp}^{3.05}$	68.0	$sp^{1.38}$	0.817
	N ₃ -0.291	B_2 -C (σ)	1.966	32.0	$\mathrm{sp}^{2.69}$	68.0	$\mathrm{sp}^{1.38}$	0.817
	C 0.268	$C-N_2(\sigma)$	1.982	37.4	$sp^{2.43}$	62.6	$sp^{1.86}$	1.300
		$C-N_2(\pi)$	1.870	26.1	$p^{1.00}$	73.9	$p^{1.00}$	
		$C-N_3(\sigma)$	1.982	37.4	$sp^{2.43}$	62.6	$sp^{1.86}$	1.300
		N_1 (LP)	1.917	-	$\mathrm{sp}^{1.64}$	-	-	-
		N_3 (LP)	1.504	-	$p^{1.00}$	-	-	-

Species	NBO Charge	Bond	Occ	(\mathbf{A})	Hyb	(B)	Hyb	WRI
opecies	NDO Ollarge	A-B	Ott	%	(A)	%	(B)	W DI
$(ImMe_2CH_2)_2 \cdot B_2N_2$								
C_2	B 0.826	B-N ₁ (σ)	1.927	26.7	$\mathrm{sp}^{1.85}$	73.3	$\mathrm{sp}^{2.06}$	1.079
	$N_1 - 1.300$	$B-N_1(\pi)$	1.744	13.2	$\mathrm{sp}^{40.36}$	86.8	${\rm sp}^{67.34}$	
	$N_2 - 1.300$	$B-N_2(\sigma)$	1.914	26.8	$\mathrm{sp}^{1.64}$	73.2	$sp^{2.20}$	1.028
	$N_3 - 0.326$	$B-C(H_2)(\sigma)$	1.865	29.0	$sp^{3.05}$	71.0	$sp^{2.90}$	0.685
	N ₄ -0.320	$C-N_3(\sigma)$	1.980	38.0	$sp^{2.38}$	62.0	$sp^{1.89}$	1.246
	$C(H_2) - 0.756$	$C-N_4(\sigma)$	1.980	38.2	$sp^{2.34}$	61.8	$sp^{1.89}$	1.254
	C 0.527	$C-N_4(\pi)$	1.874	24.6	$sp^{99.99}$	75.4	$sp^{99.99}$	
	0 0.021	$C-C(H_2)(\sigma)$	1.971	52.4	$sp^{1.46}$	47.6	$sp^{2.80}$	1.126
		N_1 (LP)	1.914	-	$sp^{1.84}$	-	-	-
		N_2 (LP)	1.914	_	$sp^{1.84}$	-	-	-
		N_3 (LP)	1.548	-	$p^{1.00}$	-	-	-
		5 ()			T.			
(Me ₃ PCH ₂) ₂ , B ₂ N ₂								
C_2	B 0.820	B-N ₁ (σ)	1.932	27.0	$\mathrm{sp}^{1.58}$	73.0	$\mathrm{sp}^{1.88}$	1.062
	$N_1 - 1.328$	$B-N_2(\sigma)$	1.925	26.6	$sp^{2.02}$	73.4	$sp^{2.34}$	1.031
	$N_2 - 1.328$	$B-N_2(\pi)$	1.745	12.2	$sp^{46.16}$	87.8	$sp^{99.99}$	
	$C(H_{a}) = 1.020$	$B-C(H_a)(\sigma)$	1 956	29.0	$sp^{2.86}$	71.0	$sp^{2.27}$	0.763
	P = 1.647	$P-C(H_2)(\sigma)$	1.900	$\frac{20.0}{42.4}$	$sp^{2.51}$	57.6	$sp^{3.18}$	0.988
	1 1.011	N_{1} (LP)	1 018	±2.±	5P 5D ^{1.85}	51.0	44	-
		\mathbf{N}_1 (L1) \mathbf{N}_2 (LD)	1.910	-	эр ср1.85	-	-	-
		N_2 (LF)	1.918	-	sp	-	-	-

Table S7: NBO Analysis for $\rm B_3N_3$ and Its Mono-substituted Complexes at the M05-2X/cc-pVTZ Level of Theory

Species	NBO Charge	Bond A-B	Occ	(A) %	Hyb (A)	(B) %	Hyb (B)	WBI
B ₃ N ₃ D _{3h}	B 1.058 N -1.508	B-N (σ) B-N (π) N (LP)	1.919 1.761 1.773	27.6 17.6	$p^{1.01}$ $p^{1.00}$ $sp^{1.79}$	72.4 82.4	sp ^{2.08} p ^{1.00}	1.326 -

		D		(A)	TT 1	(D)	TT 1	
Species	NBO Charge	Bond A-B	Occ	(A) %	Hyb (A)	(B) %	Hyb (B)	WBI
				/0	(11)	70	(2)	
$ImMe_2 \cdot B_3N_3$								
C_1	$B_1 \ 1.041$	$B_1-N_1(\sigma)$	1.981	27.6	$\mathrm{sp}^{1.00}$	72.4	$\mathrm{sp}^{1.51}$	1.405
	$B_2 \ 0.749$	$B_1-N_3(\sigma)$	1.917	27.4	$\mathrm{sp}^{1.05}$	72.6	$\mathrm{sp}^{2.04}$	1.314
	$B_3 1.046$	$B_1-N_3(\pi)$	1.758	17.4	$p^{1.00}$	82.6	$p^{1.00}$	
	$C \ 0.251$	$B_2-N_1(\sigma)$	1.902	27.3	$\mathrm{sp}^{1.82}$	72.7	$\mathrm{sp}^{1.91}$	1.082
	$N_1 - 1.171$	$B_2 - N_1(\pi)$	1.738	16.2	$p^{1.00}$	83.8	$\mathrm{sp}^{99.99}$	
	N ₂ -1.178	$B_2 - N_2(\sigma)$	1.905	27.2	$\mathrm{sp}^{1.79}$	72.8	$\mathrm{sp}^{1.89}$	1.082
	N ₃ -1.081	$B_3-N_2(\sigma)$	1.981	27.5	$\mathrm{sp}^{1.00}$	72.5	$\mathrm{sp}^{1.49}$	1.398
	N ₄ -0.288	$B_3-N_2(\pi)$	1.782	18.1	$p^{1.00}$	81.9	$p^{1.00}$	
	N ₅ -0.289	$B_3-N_3(\sigma)$	1.918	27.4	$\mathrm{sp}^{1.05}$	72.6	$\mathrm{sp}^{2.03}$	1.316
		B_2 -C (σ)	1.962	31.8	$sp^{2.47}$	68.2	$sp^{1.39}$	0.837
		$C-N_4(\sigma)$	1.982	37.5	$\mathrm{sp}^{2.42}$	62.5	$\mathrm{sp}^{1.85}$	1.298
		$C-N_4(\pi)$	1.872	26.7	$p^{1.00}$	73.3	$p^{1.00}$	
		C-N ₅ (σ)	1.982	37.5	$\mathrm{sp}^{2.42}$	62.5	$\mathrm{sp}^{1.85}$	1.297
		N_1 (LP)	1.842	-	$\mathrm{sp}^{2.82}$	-	-	-
		N_2 (LP)	1.840	-	$\mathrm{sp}^{2.89}$	-	-	-
		N_3 (LP)	1.789	-	$\mathrm{sp}^{1.88}$	-	-	-
		N_5 (LP)	1.503	-	$p^{1.00}$	-	-	-
IN CH DN								
$ImMe_2CH_2 \cdot B_3N_3$	D 1 091		1.070	075	1.01	70 5	1.45	1 41 1
C_1	$B_1 1.031$	$B_1 - N_1(\sigma)$	1.979	27.5	$sp^{1.01}$	(2.5	$sp^{1.40}$	1.415
	$B_2 \ 0.863$	$B_1 - N_1(\pi)$	1.800	18.0	p ^{1.00}	82.0	sp ^{55.55}	1.015
	$B_3 1.023$	$B_1-N_3(\sigma)$	1.919	27.4	$sp^{1.00}_{1.93}$	72.0	$sp_{1.00}$	1.315
	C(U.551)	$B_2 - N_1(\sigma)$	1.894	25.6	$sp^{1.00}$	(4.4	$sp^{1.00}$	1.022
	$C(H_2) - 0.763$	$B_2-N_2(\sigma)$	1.899	20.3	sp	(3.1	$sp^{1.00}$	1.090
	$N_1 - 1.232$	$B_2 - N_2(\pi)$	1.735	10.3	$sp^{\circ\circ\circ\circ\circ}$	83.7	p^{100}	1 490
	$N_2 - 1.157$	$B_3-N_2(\sigma)$	1.977	28.0	$sp^{0.00}$	72.0	$sp^{1.00}$	1.430
	$N_3 - 1.097$	$B_3-N_3(\sigma)$	1.917	27.4	sp^{101}	(2.0	sp^{-100}	1.295
	$N_4 - 0.310$	$B_3-N_3(\pi)$	1.703	10.9	p^{100}	83.1	p^{100}	0 740
	$N_5 - 0.318$	B_2 -C(H ₂) (σ)	1.901	29.8	$sp^{-1.60}$	10.2	sp^{-100}	0.749
		$C-C(H_2)(\sigma)$	1.975	52.2 27.0	sp^{110}	41.8	sp-1.85	1.088
		$C-N_4(\sigma)$	1.981	37.9	$sp^{2.00}$	02.1	$sp^{1.00}$	1.275
		$C-N_4(\pi)$	1.881	25.2	p ^{1.00}	(4.8	$sp^{1.86}$	1 969
		\mathbf{U} - $\mathbf{N}_5(\sigma)$	1.980	31.8	sp ^{2.90}	02.2	spree	1.203
		$N_1 (LP)$	1.840	-	sp ^{2.01}	-	-	-
		$N_2 (LP)$ N (LD)	1.830	-	$sp^{1.02}$	-	-	-
		$N_3 (LP)$ N (LD)	1.790	-	$sp^{1.02}$	-	-	-
		$N_5 (LP)$	1.938	-	p	-	-	-

Species	NBO Charge	Bond A-B	Occ	(A) %	$\begin{array}{c} \text{Hyb} \\ \text{(A)} \end{array}$	(B) %	Hyb (B)	WBI
$Me_3PCH_2 \cdot B_3N_3$								
C_1	$B_1 \ 1.007$	$B_1-N_1(\sigma)$	1.922	27.6	$\mathrm{sp}^{1.11}$	72.4	$\mathrm{sp}^{1.98}$	1.302
	$B_2 \ 1.007$	$B_1 - N_1(\pi)$	1.770	17.1	$p^{1.00}$	82.9	$p^{1.00}$	
	$B_3 0.690$	$B_1 - N_3(\sigma)$	1.966	28.9	$\mathrm{sp}^{1.00}$	71.1	$\mathrm{sp}^{2.28}$	1.378
	$C(H_2)$ -1.062	$B_2-N_1(\sigma)$	1.922	27.6	$\mathrm{sp}^{1.11}$	72.4	$\mathrm{sp}^{1.98}$	1.301
	P 1.658	$B_2 - N_2(\sigma)$	1.965	28.9	$sp^{1.00}$	71.1	$sp^{2.29}$	1.379
	N ₁ -1.097	$B_2-N_2(\pi)$	1.746	18.1	$p^{1.00}$	81.9	$p^{1.00}$	
	$N_2 - 1.076$	$B_3 - N_2(\sigma)$	1.866	28.0	$sp^{1.47}$	72.0	$\mathrm{sp}^{1.68}$	1.145
	N ₃ -1.080	$B_3-N_3(\sigma)$	1.865	28.0	$sp^{1.48}$	72.0	$\mathrm{sp}^{1.68}$	1.143
	, i i i i i i i i i i i i i i i i i i i	$B_{3}-N_{3}(\pi)$	1.751	18.7	$\mathrm{sp}^{99.99}$	81.3	$p^{1.00}$	
		$B_3-C(H_2)(\sigma)$	1.903	28.8	$sp^{4.22}$	71.2	$\mathrm{sp}^{2.38}$	0.689
		$P-C(H_2)(\sigma)$	1.980	41.3	$sp^{2.03}$	58.7	$sp^{2.72}$	1.046
		N_1 (LP)	1.789	_	$\mathrm{sp}^{1.99}$	_	-	_
		N_2 (LP)	1.841	-	$sp^{2.03}$	-	-	-
		N_3 (LP)	1.842	-	$sp^{2.05}$	-	-	-
		<u> </u>						

-

 $Tri-substituted \ B_3N_3 \ Complexes$

Species	NBO Charge	Bond	Occ	(A)	Hyb	(B)	Hyb	WRI
	NDO Onarge	A-B	Ott	%	(A)	%	(B)	W DI
$(ImMe_2)_2 \cdot B_3N_3$								
C_2	$B_1 \ 0.720$	$B_1-N_1(\sigma)$	1.975	27.4	${ m sp}^{1.65}$	72.6	$\mathrm{sp}^{1.44}$	1.163
	$B_2 \ 0.720$	$B_1-N_3(\sigma)$	1.904	27.2	$\mathrm{sp}^{1.83}$	72.8	$\mathrm{sp}^{1.90}$	1.088
	$B_3 \ 1.058$	$B_1-N_3(\pi)$	1.731	17.2	$p^{1.00}$	82.8	$\mathrm{sp}^{99.99}$	
	$C \ 0.279$	$B_2-N_1(\sigma)$	1.975	27.4	$\mathrm{sp}^{1.65}$	72.6	$\mathrm{sp}^{1.44}$	1.163
	$N_1 - 1.237$	$B_2-N_1(\pi)$	1.745	17.4	$p^{1.00}$	82.6	$p^{1.00}$	
	N ₂ -1.175	$B_2-N_2(\sigma)$	1.904	27.2	$\mathrm{sp}^{1.83}$	72.8	$\mathrm{sp}^{1.89}$	1.088
	N ₃ -1.175	$B_3-N_2(\sigma)$	1.978	27.0	$\mathrm{sp}^{1.07}$	73.0	$\mathrm{sp}^{1.46}$	1.375
	$N_4 - 0.301$	$B_3-N_2(\pi)$	1.753	18.1	$p^{1.00}$	81.9	$p^{1.00}$	
	$N_5 - 0.300$	$B_3-N_3(\sigma)$	1.978	27.0	$\mathrm{sp}^{1.07}$	73.0	$\mathrm{sp}^{1.46}$	1.375
	$N_6 - 0.300$	B_1 -C (σ)	1.962	30.9	$sp^{2.73}$	69.1	$sp^{1.34}$	0.823
	N ₇ -0.301	$C-N_4(\sigma)$	1.982	37.1	$sp^{2.48}$	62.9	$sp^{1.84}$	1.290
		$C-N_4(\pi)$	1.869	25.4	$p^{1.00}$	74.6	$p^{1.00}$	
		C-N ₅ (σ)	1.982	37.1	${\rm sp}^{2.46}$	62.9	$\mathrm{sp}^{1.83}$	1.293
		$C-N_6(\sigma)$	1.982	37.1	$sp^{2.46}$	62.9	$sp^{1.83}$	1.293
		$C-N_6(\pi)$	1.872	25.4	$p^{1.00}$	74.6	$p^{1.00}$	
		$C-N_7(\sigma)$	1.982	37.1	$sp^{2.48}$	62.9	$sp^{1.84}$	1.290
		N_1 (LP)	1.867	-	$\mathrm{sp}^{4.44}$	-	-	-
		N_2 (LP)	1.852	-	$\mathrm{sp}^{2.97}$	-	-	-
		N_3 (LP)	1.852	-	$sp^{2.97}$	-	-	-
		N_5 (LP)	1.515	-	$p^{1.00}$	_	-	_
		N_7 (LP)	1.513	-	$p^{1.00}$	-	-	-
		• \)			Ŧ			

Table S8: NBO Analysis for the Di-substituted $\rm B_3N_3$ Complexes at the M05-2X/cc-pVTZ Level of Theory

Species	NBO Charge	Bond (A-B)	Occ	(A) %	Hyb (A)	B (%)	Hyb (B)	WBI
$(\text{ImMe}_2\text{CH}_2)_2 \cdot \text{B}_3\text{N}_3$					1.65		1 41	
C_2	$B_1 0.861$	$B_1-N_1(\sigma)$	1.971	26.2	$sp^{1.00}$	73.8	$sp^{1.41}$	1.153
	$B_2 \ 0.861$	$B_1 - N_1(\pi)$	1.762	16.2	$sp^{33.33}$	83.8	p ^{1.00}	
	$B_3 1.058$	$B_1-N_3(\sigma)$	1.902	25.7	$sp^{1.03}$	74.3	$sp^{1.00}$	1.053
	$C(H_2) - 0.749$	$B_2-N_1(\sigma)$	1.971	26.2	$sp_{1.00}^{1.00}$	73.8	$sp^{1.41}$	1.153
	$C \ 0.525$	$B_2-N_2(\sigma)$	1.902	25.7	$sp^{1.83}$	74.3	$sp^{1.86}$	1.053
	$N_1 - 1.308$	B_2 - $\mathrm{N}_2~(\pi)$	1.745	15.4	$sp^{99.99}$	84.6	$p^{1.00}$	
	$N_2 - 1.235$	B_3 - $N_2(\sigma)$	1.974	27.0	$\mathrm{sp}^{1.09}$	73.0	$\mathrm{sp}^{1.45}$	1.373
	N ₃ -1.235	B_3 - $N_3(\sigma)$	1.974	27.0	$\mathrm{sp}^{1.09}$	73.0	$\mathrm{sp}^{1.45}$	1.373
	$N_4 - 0.318$	B_3 - $N_3(\pi)$	1.784	17.4	$p^{1.00}$	82.6	$p^{1.00}$	
	$N_5 - 0.320$	B_1 - $C(H_2)(\sigma)$	1.875	28.4	$\mathrm{sp}^{2.73}$	71.6	$\mathrm{sp}^{2.70}$	0.702
		$C-C(H_2)(\sigma)$	1.972	52.6	$\mathrm{sp}^{1.46}$	47.4	$\mathrm{sp}^{2.89}$	1.111
		C-N ₄ (σ)	1.981	38.1	$\mathrm{sp}^{2.35}$	61.9	$\mathrm{sp}^{1.88}$	1.259
		C-N ₄ (π)	1.877	24.8	$\mathrm{sp}^{99.99}$	75.2	$p^{1.00}$	
		C-N ₅ (σ)	1.981	38.1	$\mathrm{sp}^{2.37}$	61.9	$\mathrm{sp}^{1.88}$	1.256
		N_1 (LP)	1.867	-	$\mathrm{sp}^{4.74}$	-	-	-
		N_2 (LP)	1.848	-	$\mathrm{sp}^{3.05}$	-	-	-
		N_3 (LP)	1.848	-	${ m sp}^{3.05}$	-	-	-
		N_5 (LP)	1.544	-	$sp^{1.00}$	-	-	-
(Me2PCH2)2. B2N2								
C_1	$B_1 = 1.055$	$B_1-N_1(\sigma)$	1.976	27.5	${ m sp}^{1.07}$	72.5	${ m sp}^{1.30}$	1 443
01	$B_{2} 0.839$	$B_1 - N_1(\sigma)$	1 781	18.9	$n^{1.00}$	81.1	$p^{1.00}$	1.110
	$B_2 = 0.839$ $B_2 = 0.849$	$B_1 - N_2(\sigma)$	1.101	26.5	$sp^{1.10}$	73.5	$sp^{1.42}$	1 309
	$C(H_2)_1 = 1.051$	$B_1 N_3 (\sigma)$ B ₂ -N ₁ (σ)	1 895	$\frac{26.6}{26.6}$	$sp^{1.79}$	73.4	sp $sp^{1.89}$	1.000 1.075
	$C(H_2)_1 = 1.051$ $C(H_2)_2 = 1.053$	$B_2 N_1(\sigma)$ Ba-Na (σ)	1.000 1.073	26.0 26.4	sp $sp^{1.74}$	73.6	sp $sp^{1.51}$	1.076
	$P_1 = 1.644$	$B_2 N_2(\sigma)$ Ba-Na (π)	1.510 1.764	15.5	$n^{1.00}$	84.4	$n^{1.00}$	1.120
	$P_{a} = 1.646$	$B_2 N_2(\pi)$ Ba-Na (σ)	1.701 1 974	26.5	$P_{SD}^{1.62}$	73.5	P sp ^{1.31}	1.173
	$N_1 = 1.165$	$B_3 N_2(\sigma)$	1 908	20.0 25.6	$^{\mathrm{SP}}_{\mathrm{SD}^{1.90}}$	74.4	$^{\mathrm{SP}}_{\mathrm{SD}^{1.87}}$	1.170 1.035
	$N_1 = 1.100$ $N_2 = 1.318$	$B_3 - N_3(\sigma)$ $B_2 - N_2(\pi)$	1.500 1.772	14.6	$p^{1.00}$	85.4	$p^{1.00}$	1.055
	$N_2 = 1.010$	$D_3^{-1}N_3(\pi)$ B. $C(H_1)$, (σ)	1.112 1.051	14.0 98 1	$P_{cp^{2.62}}$	71.0	$P_{cn}^{2.18}$	0 763
	113 -1.290	$B_{2} - C(H_{2})_{1}(\sigma)$	1.991	20.1	эр 50 ^{2.67}	79.1	эр 50 ^{2.13}	0.703
		D_3 -C(Π_2) ₂ (σ)	1.900	49.7	$^{\rm sp}_{\rm cp^{2.43}}$	12.1 57.2	sp m ^{3.19}	0.702
		$P_{1} C(H_{2}) (0)$	1.979	44.1 28 1	sp 3.68	07.0 61.6	$^{\mathrm{sp}}_{\mathrm{sp}^{2.59}}$	0.990
		12 - O(112)2(0) N (1D)	1.900	00.4	$sp^{2.96}$	01.0	sp	1.000
		$\mathbf{N}_1 (\mathbf{L}\mathbf{\Gamma})$ $\mathbf{N}_1 (\mathbf{L}\mathbf{D})$	1.009	-	sp 304.87	-	-	-
		\mathbf{N}_2 (LF) N (LD)	1.070	-	sp 3.12	-	-	-
		\mathbb{N}_3 (LP)	1.898	-	sp	-	-	-

Species	NBO Charge	Bond (A-B)	Occ	(A) %	Hyb (A)	B (%)	Hyb (B)	WBI
$(ImMo_{1}) \cdot B \cdot N$								
C_{2}	$B_{1} = 0.757$	$B_{1}-N_{1}(\sigma)$	1 972	26.7	$sp^{1.64}$	73 3	$sp^{1.43}$	1 141
02	$B_2 0.757$	$B_1 - N_2(\sigma)$	1.971	26.9	$sp^{1.63}$	73.1	$sp^{1.46}$	1.144
	$B_2 0.748$	$B_1 - N_2(\pi)$	1.722	17.7	$p^{1.00}$	82.3	$sp^{99.99}$	
	$C_1 0.292$	$B_2-N_1(\sigma)$	1.972	26.7	$sp^{1.64}$	73.3	$sp^{1.43}$	1.141
	$C_2 0.292$	$B_{2}-N_{1}(\pi)$	1.731	17.5	${\rm sp}^{99.99}$	82.5	$p^{1.00}$	
	$\tilde{C_{3}}$ 0.311	$B_2 - N_2(\sigma)$	1.971	26.8	$sp^{1.63}$	73.2	$sp^{1.46}$	1.144
	N ₁ -1.248	$B_3 - N_2(\sigma)$	1.970	26.7	$sp^{1.62}$	73.3	$sp^{1.42}$	1.148
	N ₂ -1.238	$B_{3}-N_{2}(\pi)$	1.729	18.1	$sp^{99.99}$	81.9	$sp^{99.99}$	
	N ₃ -1.238	$B_3-N_3(\sigma)$	1.970	26.7	$sp^{1.62}$	73.3	$sp^{1.42}$	1.148
	N ₄ -0.310	$B_1-C_2(\sigma)$	1.958	29.4	$\mathrm{sp}^{3.15}$	70.6	${ m sp}^{1.30}$	0.797
	N ₅ -0.310	$B_2-C_1(\sigma)$	1.959	29.4	$\mathrm{sp}^{3.14}$	70.6	$\mathrm{sp}^{1.30}$	0.797
	N ₆ -0.310	$B_3-C_3(\sigma)$	1.957	29.5	$\mathrm{sp}^{3.20}$	70.5	$\mathrm{sp}^{1.30}$	0.792
	N ₇ -0.310	$C_1-N_4(\sigma)$	1.981	36.8	$\mathrm{sp}^{2.51}$	63.2	$\mathrm{sp}^{1.81}$	1.286
	N ₈ -0.316	C_1 -N ₅ (σ)	1.982	36.8	$\mathrm{sp}^{2.52}$	63.2	$\mathrm{sp}^{1.80}$	1.286
	N ₉ -0.316	C_1 -N ₅ (π)	1.870	24.5	$p^{1.00}$	75.5	$p^{1.00}$	
		$C_2-N_6(\sigma)$	1.982	36.8	$\mathrm{sp}^{2.52}$	63.2	$\mathrm{sp}^{1.80}$	1.286
		C_2 - $N_6(\pi)$	1.870	24.5	$p^{1.00}$	75.5	$p^{1.00}$	
		$C_2-N_7(\sigma)$	1.981	36.8	$\mathrm{sp}^{2.51}$	63.2	$\mathrm{sp}^{1.81}$	1.286
		$C_3-N_8(\sigma)$	1.981	36.7	$\mathrm{sp}^{2.51}$	63.3	$\mathrm{sp}^{1.81}$	1.286
		$C_3-N_8(\pi)$	1.871	23.9	$p^{1.00}$	76.1	$p^{1.00}$	
		$C_3-N_9(\sigma)$	1.982	36.7	$\mathrm{sp}^{2.51}$	63.3	$\mathrm{sp}^{1.81}$	1.286
		$N_1 (LP)$	1.867	-	$\mathrm{sp}^{4.56}$	-	-	-
		$N_2 (LP)$	1.873	-	$\mathrm{sp}^{4.48}$	-	-	-
		$N_3 (LP)$	1.873	-	$sp^{4.48}$	-	-	-
		N_4 (LP)	1.523	-	$p_{1.00}^{1.00}$	-	-	-
		$N_7 (LP)$	1.523	-	$p_{1.00}^{1.00}$	-	-	-
		$N_9 (LP)$	1.529	-	$p^{1.00}$	-	-	-

Table S9: NBO Analysis for the Tri-substituted $\rm B_3N_3$ Complexes at the M05-2X/cc-pVTZ Level of Theory

Species	NBO Charge	Bond	Occ	(A)	Hyb	\mathbf{B}	Hyb (P)	WBI
		(A-D)		70	(A)	(70)	(D)	
$(ImMe_2CH_2)_3 \cdot B_3N_3$								
C_1	$B_1 \ 0.904$	$B_1-N_1(\sigma)$	1.967	25.3	$\mathrm{sp}^{1.60}$	74.7	$\mathrm{sp}^{1.38}$	1.135
	$B_2 \ 0.909$	$B_1-N_1(\pi)$	1.761	16.4	$\mathrm{sp}^{99.99}$	83.6	$\mathrm{sp}^{99.99}$	
	$B_3 0.909$	B_1 - $N_3(\sigma)$	1.964	25.5	$\mathrm{sp}^{1.60}$	74.5	$\mathrm{sp}^{1.43}$	1.121
	$C(H_2)_1 - 0.750$	B_2 - $N_1(\sigma)$	1.966	25.4	$\mathrm{sp}^{1.59}$	74.6	$\mathrm{sp}^{1.41}$	1.124
	$C(H_2)_2 - 0.750$	B_2 - $N_2(\sigma)$	1.966	25.3	$\mathrm{sp}^{1.58}$	74.7	$\mathrm{sp}^{1.38}$	1.137
	$C(H_2)_3 - 0.751$	B_2 - $N_2(\pi)$	1.758	16.4	$\mathrm{sp}^{99.99}$	83.6	$\mathrm{sp}^{99.99}$	
	$C_1 0.525$	B_3 - $N_2(\sigma)$	1.966	25.3	$\mathrm{sp}^{1.57}$	74.7	$\mathrm{sp}^{1.41}$	1.126
	$C_2 \ 0.524$	B_3 - $N_3(\sigma)$	1.966	25.3	$\mathrm{sp}^{1.57}$	74.7	$\mathrm{sp}^{1.37}$	1.145
	$C_3 \ 0.527$	B_3 - $N_3(\pi)$	1.760	16.7	$\mathrm{sp}^{99.99}$	83.3	$\mathrm{sp}^{99.99}$	
	$N_1 - 1.332$	$B_1-C(H_2)_2(\sigma)$	1.842	26.4	$\mathrm{sp}^{3.36}$	73.6	$\mathrm{sp}^{2.89}$	0.642
	N ₂ -1.331	$B_2-C(H_2)_1(\sigma)$	1.835	26.2	$\mathrm{sp}^{3.44}$	73.8	$\mathrm{sp}^{2.96}$	0.633
	$N_3 - 1.326$	$B_3-C(H_2)_3(\sigma)$	1.824	25.9	$\mathrm{sp}^{3.54}$	74.1	${ m sp}^{3.06}$	0.620
	$N_4 - 0.331$	C_1 - $C(H_2)_1(\sigma)$	1.973	52.8	$\mathrm{sp}^{1.42}$	47.2	$\mathrm{sp}^{2.78}$	1.154
	$N_5 - 0.327$	C_2 - $C(H_2)_2(\sigma)$	1.973	52.8	$\mathrm{sp}^{1.43}$	47.2	$\mathrm{sp}^{2.81}$	1.145
	$N_{6} - 0.325$	C_3 - $C(H_2)_3(\sigma)$	1.974	52.8	$\mathrm{sp}^{1.41}$	47.2	$\mathrm{sp}^{2.72}$	1.167
	N ₇ -0.328	C_1 - $N_4(\sigma)$	1.980	38.0	$\mathrm{sp}^{2.42}$	62.0	$\mathrm{sp}^{1.88}$	1.232
	$N_8 - 0.334$	C_1 - $N_5(\sigma)$	1.980	38.1	$\mathrm{sp}^{2.39}$	61.9	$\mathrm{sp}^{1.88}$	1.238
	N ₉ -0.333	C_1 - $N_5(\pi)$	1.873	23.8	$\mathrm{sp}^{99.99}$	76.2	$\mathrm{sp}^{99.99}$	
		C_2 - $N_6(\sigma)$	1.980	38.1	$\mathrm{sp}^{2.39}$	61.9	$\mathrm{sp}^{1.88}$	1.242
		C_2 - $N_6(\pi)$	1.874	24.0	$\mathrm{sp}^{99.99}$	76.0	$\mathrm{sp}^{99.99}$	
		C_2 - $N_7(\sigma)$	1.980	38.1	$\mathrm{sp}^{2.40}$	61.9	$\mathrm{sp}^{1.88}$	1.238
		C_3 - $N_8(\sigma)$	1.980	38.0	$\mathrm{sp}^{2.41}$	62.0	$\mathrm{sp}^{1.88}$	1.230
		C_3 - $N_8(\pi)$	1.873	23.3	$\mathrm{sp}^{99.99}$	76.7	$\mathrm{sp}^{99.99}$	
		C_3 -N ₉ (σ)	1.980	38.0	$\mathrm{sp}^{2.42}$	62.0	$\mathrm{sp}^{1.88}$	1.230
		$N_1 (LP)$	1.866	-	$\mathrm{sp}^{4.96}$	-	-	-
		N_2 (LP)	1.867	-	$\mathrm{sp}^{4.97}$	-	-	-
		N_3 (LP)	1.869	-	$\mathrm{sp}^{4.91}$	-	-	-
		$N_4 (LP)$	1.561	-	$p^{1.00}$	-	-	-
		$N_7 (LP)$	1.556	-	$p^{1.00}$	-	-	-
		$N_9 (LP)$	1.561	-	$p^{1.00}$	-	-	-

Species	NDO Charge	Bond	$O_{\alpha\alpha}$	(\mathbf{A})	Hyb	(B)	Hyb	WDI
species	NDO Charge	A-B	Occ	%	(\mathbf{A})	%	(B)	W DI
$(Me_3PCH_2)_3 \cdot B_3N_3$								
C_1	$B_1 \ 0.871$	$B_1-N_1(\sigma)$	1.968	25.3	$\mathrm{sp}^{1.61}$	74.7	$\mathrm{sp}^{1.32}$	1.149
	$B_2 \ 0.854$	$B_1-N_3(\sigma)$	1.969	24.8	$\mathrm{sp}^{1.66}$	75.2	$\mathrm{sp}^{1.29}$	1.118
	$B_3 0.869$	$B_1-N_3(\pi)$	1.781	16.3	$\mathrm{sp}^{99.99}$	83.7	$\mathrm{sp}^{99.99}$	
	$C(H_2)_1 - 1.070$	$B_2-N_1(\sigma)$	1.966	25.2	${ m sp}^{1.69}$	74.8	$\mathrm{sp}^{1.43}$	1.099
	$C(H_2)_2$ -1.051	$B_2-N_1(\pi)$	1.745	16.0	$\mathrm{sp}^{99.99}$	84.0	$\mathrm{sp}^{99.99}$	
	$C(H_2)_3 - 1.052$	$B_2-N_2(\sigma)$	1.966	25.7	$\mathrm{sp}^{1.62}$	74.3	$\mathrm{sp}^{1.38}$	1.164
	$P_1 \ 1.645$	$B_3-N_2(\sigma)$	1.966	26.0	$\mathrm{sp}^{1.57}$	74.0	$\mathrm{sp}^{1.36}$	1.201
	$P_2 \ 1.645$	$B_3-N_2(\pi)$	1.740	18.7	$\mathrm{sp}^{99.99}$	81.3	$\mathrm{sp}^{99.99}$	
	$P_3 \ 1.643$	$B_3-N_3(\sigma)$	1.967	25.0	$\mathrm{sp}^{1.66}$	75.0	$\mathrm{sp}^{1.47}$	1.072
	N ₁ -1.341	$B_1-C(H_2)_3(\sigma)$	1.924	26.0	$\mathrm{sp}^{3.21}$	74.0	$\mathrm{sp}^{2.22}$	0.704
	$N_2 - 1.260$	$B_2-C(H_2)_2(\sigma)$	1.928	26.4	$\mathrm{sp}^{3.12}$	73.6	$\mathrm{sp}^{2.21}$	0.713
	N ₃ -1.381	$B_3-C(H_2)_1(\sigma)$	1.931	25.7	$\mathrm{sp}^{3.29}$	74.3	$\mathrm{sp}^{2.22}$	0.700
		P_1 - $C(H_2)_1(\sigma)$	1.978	43.5	$sp^{2.32}$	56.5	$sp^{3.24}$	1.024
		P_2 -C(H ₂) ₂ (σ)	1.971	43.1	$\mathrm{sp}^{2.37}$	56.9	$\mathrm{sp}^{3.51}$	1.014
		$P_3-C(H_2)_3(\sigma)$	1.972	43.3	$sp^{2.34}$	56.7	$sp^{3.54}$	1.019
		N_1 (LP)	1.872	-	$sp^{5.24}$	-		-
		N_2 (LP)	1.871	_	$sp^{5.22}$	-	_	_
		N_3 (LP)	1.870	-	$sp^{5.17}$	-	_	_
					1			

$\mathbf{ImMe}_2 \ C_{2v}$			
M05-2X = -304.8704604			
С	-0.00000500	-0.97321900	0.00000000
С	-0.00000300	1.20631500	0.67382200
С	-0.00000300	1.20631500	-0.67382200
Н	-0.00001300	2.01808300	1.37515700
Н	-0.00001300	2.01808300	-1.37515700
Ν	-0.00000300	-0.12043200	1.05485000
Ν	-0.00000300	-0.12043200	-1.05485000
С	0.00000600	-0.56932200	2.42963000
Н	-0.00004300	-1.65192800	2.41233400
Н	0.88655000	-0.21276100	2.94804100
Н	-0.88648300	-0.21267500	2.94807500
С	0.00000600	-0.56932200	-2.42963000
Н	0.88655000	-0.21276100	-2.94804100
Н	-0.00004300	-1.65192800	-2.41233400
Н	-0.88648300	-0.21267500	-2.94807500

Table S10: Gas Phase Ground State M05-2X/cc-pVTZ Determined XYZ Coordinates (in Å) for All the Studied Species. Electronic Energies Are Also Given in Hartrees.

$ImMe_2CH_2 \ C_{2v}$			
M05-2X = -344.2017065			
С	-0.00001100	-1.54125200	0.66984000
\mathbf{C}	-0.00001100	-1.54125200	-0.66984000
Н	-0.00001300	-2.35639200	1.36532200
Н	-0.00001300	-2.35639200	-1.36532200
Ν	-0.00001100	-0.21756400	1.09248300
Ν	-0.00001100	-0.21756400	-1.09248300
\mathbf{C}	0.00001000	0.26987000	2.44048000
Н	-0.88401000	0.87981500	2.62573300
Н	0.00000900	-0.57440300	3.12134800
Н	0.88404200	0.87980500	2.62571600
\mathbf{C}	0.00001000	0.26987000	-2.44048000
Н	0.00000900	-0.57440300	-3.12134800
Н	-0.88401000	0.87981500	-2.62573300
Н	0.88404200	0.87980500	-2.62571600
\mathbf{C}	-0.00000300	0.62366700	0.00000000
\mathbf{C}	0.00001900	1.97674100	0.00000000
Н	0.00000000	2.52119400	-0.92585200
Н	0.00000000	2.52119400	0.92585200

Me_2PCH_2 C_2			
M05-2X = -500.4034220			
Р	-0.12512900	0.00001100	-0.08571600
\mathbf{C}	0.05849300	-1.46477200	0.97233500
Н	1.04079500	-1.48946400	1.43597000
Н	-0.06850900	-2.34987600	0.35415700
Н	-0.71935900	-1.44939500	1.72826400
\mathbf{C}	1.47600300	-0.00013100	-1.00670300
Н	1.50643600	-0.88196800	-1.64151800
Н	2.33494900	-0.00017300	-0.33817300
Н	1.50656500	0.88166000	-1.64157500
\mathbf{C}	0.05874300	1.46477500	0.97232000
Н	-0.71911100	1.44953300	1.72825000
Н	1.04104900	1.48931400	1.43595400
\mathbf{C}	-1.60776400	0.00013000	-0.85889300
Н	-1.94522000	0.92302400	-1.30207400
Н	-1.94539400	-0.92273200	-1.30200800
Н	-0.06811800	2.34989300	0.35413300

BN (singlet) $C_{\infty v}$ M05-2X = -79.3899541			
В	0.00000000	0.00000000	-0.73565100
Ν	0.00000000	0.00000000	0.52546500

BN (triplet) $C_{\infty v}$ M05-2X = -79.4244890			
В	0.00000000	0.00000000	-0.76690500
Ν	0.00000000	0.00000000	0.54779000

ImMo. BN C			
$\mathbf{M} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} \mathbf{H} H$			
M05-2X = -384.4901216			
В	0.00112600	-1.83909100	-0.00001300
Ν	0.00190400	-3.08769800	0.00000200
\mathbf{C}	0.00019200	-0.32251300	-0.00000200
\mathbf{C}	-0.67697700	1.79593700	-0.00001400
\mathbf{C}	0.67478000	1.79675900	0.00001100
Н	-1.37785900	2.60660300	-0.00003200
Н	1.37467900	2.60827400	0.00001900
Ν	-1.07578800	0.48169800	-0.00001000
Ν	1.07519300	0.48300900	0.00000300
С	-2.44686300	-0.00266100	0.00001300
Н	-2.40819600	-1.08728300	-0.00005500
Н	-2.95843800	0.34967300	0.88956400
Н	-2.95850200	0.34978100	-0.88945900
С	2.44685800	0.00031700	0.00000200
Н	2.95804300	0.35335200	0.88950000
Н	2.40951200	-1.08435200	0.00002400
Н	2.9580300	0.35330600	-0.88952200

ImMe ₂ CH ₂ · BN C_1			
M05-2X = -423.7965637			
В	2.15726600	-0.92697300	-0.10734500
Ν	3.44042800	-0.86090200	-1.02777200
\mathbf{C}	-1.27615300	1.65111600	-0.41468200
\mathbf{C}	-2.09949400	0.59464500	-0.54020600
Н	-1.49477100	2.66473300	-0.67877500
Н	-3.09850500	0.60697700	-0.92327100
Ν	-0.02100500	1.14712300	0.15367600
Ν	-1.36515000	-0.57763400	-0.05114800
\mathbf{C}	1.16774100	1.95474500	0.46289600
Н	2.04561500	1.35205400	0.35755400
Н	1.22105800	2.78370400	-0.21156800
Н	1.10184000	2.31628200	1.46784200
\mathbf{C}	-1.87879100	-1.95414900	-0.00127700
Н	-2.58523000	-2.10017500	-0.79158900
Н	-1.06733700	-2.64206100	-0.11657700
Н	-2.35770100	-2.12220800	0.94069700
\mathbf{C}	-0.14172400	-0.17968800	0.34423600
\mathbf{C}	0.81866100	-0.98830100	0.85454700
Н	0.45426000	-1.99354300	0.89498100
Н	1.07309100	-0.66120400	1.84105400

$Me_{2}PCH_{2}$ · BN C_{2}			
M05-2X = -580.0255700			
В	1.94523500	-0.67611700	-0.00000400
Ν	2.70518000	0.31769000	0.00000200
Р	-0.51565000	-0.01320300	0.00000000
\mathbf{C}	-0.22888600	0.98888400	-1.46541600
Н	-0.88513800	1.85473200	-1.44564200
Н	-0.42741100	0.39559000	-2.35402300
Н	0.82058400	1.27806900	-1.43241900
\mathbf{C}	-2.26284800	-0.50602300	-0.00000900
Н	-2.46904400	-1.10075300	-0.88552000
Н	-2.90025700	0.37369200	0.00000100
Н	-2.46904700	-1.10077500	0.88548700
\mathbf{C}	-0.22889200	0.98885600	1.46543600
Н	-0.88515000	1.85470000	1.44567800
Н	-0.42741400	0.39554400	2.35403100
\mathbf{C}	0.57592100	-1.43812700	-0.00001100
Н	0.38142300	-2.03780800	0.88704600
Н	0.38142600	-2.03779100	-0.88708000
Н	0.82057500	1.27805000	1.43244500

BNBN (singlet) C_s			
M05-2X = -159.03113210			
В	-0.14875900	-2.00519200	0.00000000
Ν	0.33418800	-0.76360800	0.00000000
В	0.00000000	0.51117300	0.00000000
Ν	-0.22793100	1.83076400	0.00000000
BNBN (triplet) C_s			
M05-2X = -159.10314930			
В	-0.00676900	-2.05607100	0.00000000
Ν	0.02585800	-0.80231300	0.00000000
В	0.00000000	0.56028900	0.00000000
N	-0.02102400	1.87072900	0.00000000

ImMe ₂ · BNBN C_{2v}			
M05-2X = -464.1080049			
В	-1.01100900	0.00001500	0.00000000
Ν	-2.25066600	0.00001500	0.00000000
В	-3.65379400	0.00001000	0.00000000
Ν	-4.91314000	0.00000100	-0.00000100
\mathbf{C}	0.49864600	0.00000200	-0.00000200
\mathbf{C}	2.60953600	0.67684000	0.00002200
\mathbf{C}	2.60952500	-0.6768680	-0.00002500
Н	3.42154200	1.37641800	0.00003600
Н	3.42152000	-1.37645900	-0.00004200
Ν	1.29950400	1.07936200	0.00004400
Ν	1.29948700	-1.07937000	-0.00004900
\mathbf{C}	0.82588200	2.45717000	-0.00001600
Н	-0.25862400	2.44163900	0.00075500
Н	1.18450200	2.96345600	0.88944700
Н	1.18322900	2.96298500	-0.89026300
\mathbf{C}	0.82584100	-2.45717000	0.00002500
Н	1.18307000	-2.96294700	0.89034100
Н	-0.25866400	-2.44161900	-0.00087800
Н	1.18456200	-2.96350500	-0.88936900

$ImMe_2CH_2$ · BNBN C_1			
M05-2X = -503.4346098			
В	-0.66374500	-1.96084900	0.08929300
Ν	-1.54969300	-1.64144300	-0.72417900
В	-2.19058000	-0.45533900	-1.20035400
Ν	-2.54569700	0.74557400	-1.34587900
\mathbf{C}	0.26166900	1.87690500	0.06276300
\mathbf{C}	1.38566900	1.51376100	-0.58749000
Н	-0.33418000	2.76471800	0.00494300
Н	1.99348300	2.03996700	-1.29459600
Ν	-0.12405700	0.81168500	0.83487000
Ν	1.65665500	0.21271700	-0.22008800
\mathbf{C}	-1.39102100	0.78155500	1.56458200
Н	-1.45364400	-0.13794000	2.13258900
Н	-1.41736900	1.63098300	2.23837500
Н	-2.17625000	0.82924400	0.79713400
\mathbf{C}	2.69728600	-0.62303700	-0.79304300
Н	3.31438900	0.00077800	-1.42730800
Н	3.31333400	-1.05156800	-0.00975800
Н	2.24939900	-1.40971200	-1.39326400
\mathbf{C}	0.71858300	-0.19950200	1.05985600
\mathbf{C}	0.50892800	-1.61734200	1.05985600
Н	1.41407900	-2.19658600	0.91687000
Н	0.22124500	-1.68271500	2.10520800

$Me_{3}PCH_{2} \cdot BNBN C_{s}$			
$\frac{1005-2X = -059.0000397}{D}$	0.00527200	1 005 45500	0.00000100
В	-0.90537200	-1.09545700	-0.00002100
Ν	-2.04402200	-1.19040900	-0.00000800
В	-2.57585400	0.13201900	0.00000300
Ν	-2.60779200	1.39322600	0.00001000
Р	0.97135100	0.09612400	-0.00000500
\mathbf{C}	2.76795600	0.32084300	0.00000200
Н	2.98683200	1.38515600	0.00004900
Н	3.19588800	-0.13495800	-0.88833000
Н	3.19588500	-0.13503300	0.88829700
\mathbf{C}	0.24118900	0.85693800	-1.44925600
Н	0.33514200	0.20707100	-2.31426600
Н	0.74846600	1.80054500	-1.63552300
Н	-0.82098700	1.05756700	-1.19486900
\mathbf{C}	0.24119200	0.85689300	1.44927500
Н	0.33506600	0.20694600	2.31423500
Н	0.74852700	1.80044800	1.63564000
\mathbf{C}	0.63726900	-1.70204400	-0.00001300
Н	1.08455600	-2.14275300	-0.88777500
Н	1.08452500	-2.14273800	0.88777300
Н	-0.82096500	1.05759000	1.19487400
$\begin{array}{c} \mathbf{B}_{2}\mathbf{N}_{2} \text{ (singlet) } D_{2h} \\ \mathbf{M05-2X} = -159.0836566 \end{array}$			
---	------------	-------------	-------------
Ν	0.00000000	0.00000000	1.17746900
Ν	0.00000000	0.00000000	-1.17746900
В	0.00000000	0.74170900	0.00000000
В	0.00000000	-0.74170900	0.00000000

$\mathbf{B}_2\mathbf{N}_2$ (triplet) D_{2h}			
M05-2X =-159.1046768			
N	1.17737800	-0.00000300	0.00000200
Ν	-1.17737900	-0.00000100	0.00000200
В	0.00000300	0.79744800	-0.00000300
B	-0.00000100	-0.79744100	-0.00000300

$ImMe_2 \cdot B_2N_2 C_{2v}$			
M05-2X = -464.1424308			
N	2.31469300	-1.20050300	-0.00045100
Ν	2.31509500	1.20010800	0.00038400
В	1.43148000	-0.00011600	0.00003500
В	2.97635500	-0.00028500	-0.00005900
\mathbf{C}	-0.12882500	-0.00000200	0.00007900
\mathbf{C}	-2.23460000	-0.67771900	-0.00001200
\mathbf{C}	-2.23446400	0.67818100	-0.00011300
Н	-3.04411500	-1.38016500	0.00001300
Н	-3.04380500	1.38082800	-0.00024700
Ν	-0.92709500	-1.07557500	0.00009200
Ν	-0.92686000	1.07573200	-0.00004700
\mathbf{C}	-0.46955300	-2.46497700	0.00015400
Н	0.61768800	-2.45250500	0.00003700
Н	-0.85024700	-2.95659300	0.88919400
Н	-0.85042200	-2.95671900	-0.88873900
\mathbf{C}	-0.46893400	2.46502100	-0.00007300
Н	-0.84952600	2.95679100	0.88893300
Н	0.61832500	2.45220100	-0.00011400
НН	-0.84965200	2.95680200	-0.88901600

$ImMe_2CH_2 \cdot B_2N_2 C_s$			
M05-2X = -503.4583931			
N	2.26958100	-1.20178900	0.51897800
Ν	2.26956200	1.20179400	0.51897400
В	1.81790400	0.00000900	-0.24832100
В	2.61608200	0.00000200	1.07907100
\mathbf{C}	-2.12170400	-0.67544900	0.73444500
\mathbf{C}	-2.12170200	0.67543500	0.73445800
Н	-2.74150000	-1.37884300	1.25228300
Н	-2.74149900	1.37882400	1.25230100
Ν	-1.10556500	-1.07824700	-0.09979900
Ν	-1.10556200	1.07824100	-0.09978000
\mathbf{C}	-0.61789200	-2.44393700	-0.28025400
Н	0.43243900	-2.46317700	0.01256900
Н	-1.20459200	-3.09040100	0.36089900
Н	-0.74666200	-2.74628800	-1.31474100
\mathbf{C}	-0.61790800	2.44393600	-0.28025300
Н	-1.20464500	3.09040700	0.36085800
Н	0.43241500	2.46320200	0.01259900
Н	-0.74664900	2.74625300	-1.31475500
\mathbf{C}	-0.49886700	0.00000100	-0.59964800
\mathbf{C}	0.72637400	0.00000700	-1.40918000
Н	0.78241500	0.89354200	-2.02089000
Н	0.78242300	-0.89352300	-2.02089600

$\mathbf{Me}_{3}\mathbf{PCH}_{2} \cdot \mathbf{B}_{2}\mathbf{N}_{2} \ C_{s}$			
M05-2X = -659.6811466			
N	-3.04025700	-0.90284600	-0.00000400
Ν	-1.71941700	1.10989700	0.00000300
В	-1.65993800	-0.43900400	-0.00000200
В	-2.91804000	0.46821800	0.00000100
Р	1.05778100	-0.04490500	-0.00000100
\mathbf{C}	2.64881700	-0.91137900	-0.00000200
Н	3.46238300	-0.19125300	0.00001400
Н	2.72021800	-1.53668600	-0.88551200
Н	2.72020500	-1.53668600	0.88549100
\mathbf{C}	0.98957200	0.98605500	-1.47003100
Н	1.04995300	0.35609500	-2.35357000
Н	1.81824800	1.68889100	-1.46092100
Н	0.02706900	1.49523100	-1.42461200
\mathbf{C}	0.98957200	0.98604900	1.47003400
Н	1.04995500	0.35608400	2.35357100
Н	1.81824800	1.68888500	1.46092600
\mathbf{C}	-0.28344800	-1.22886700	0.00000000
Н	-0.20977200	-1.86438900	-0.88082800
Н	-0.20977300	-1.86437900	0.88083600
Н	0.02706900	1.49522500	1.42461800

$(\text{ImMe}_2)_2 \cdot \mathbf{B}_2 \mathbf{N}_2 \ C_{2v}$			
M05-2X = -769.0983332			
Ν	-0.00012100	1.17474800	0.82521300
Ν	0.00012100	-1.17474300	0.82521800
В	0.83288500	0.00007600	0.67676200
В	-0.83288400	-0.00007200	0.67675900
\mathbf{C}	2.33791800	0.00018300	0.11821500
\mathbf{C}	4.34045600	0.67737700	-0.56790900
\mathbf{C}	4.34085100	-0.67675600	-0.56700700
Н	5.10460300	1.38064500	-0.83327700
Н	5.10541500	-1.37992900	-0.83142500
Ν	3.09905000	1.07199000	-0.14201400
Ν	3.09967100	-1.07152500	-0.14060300
\mathbf{C}	2.65060400	2.45175800	0.01821600
Н	1.59744700	2.40783500	0.30280000
Н	3.24552500	2.93201400	0.78913200
Н	2.77867700	2.97397100	-0.92510800
\mathbf{C}	2.65204700	-2.45134400	0.02148800
Н	3.24732800	-2.93022400	0.79298300
Н	1.59888000	-2.40768900	0.30604800
Н	2.78034300	-2.97473100	-0.92115400
\mathbf{C}	-2.33791800	-0.00018200	0.11821300
\mathbf{C}	-4.34085300	0.67675300	-0.56700500
\mathbf{C}	-4.34045700	-0.67738000	-0.56790400
Н	-5.10541900	1.37992400	-0.83142100
Н	-5.10460400	-1.38064900	-0.83326900
Ν	-3.09967300	1.07152400	-0.14060500
Ν	-3.09904900	-1.07199100	-0.14201300
\mathbf{C}	-2.65205100	2.45134300	0.02148500
Н	-1.59888300	2.40769100	0.30604000
Н	-2.78035200	2.97473100	-0.92115700
Н	-3.24733000	2.93022200	0.79298300
\mathbf{C}	-2.65059800	-2.45175700	0.01821300
H	-2.77865800	-2.97396600	-0.92511600
Н	-1.59744400	-2.40783200	0.30280800
Н	-3.24552700	-2.93202200	0.78911900

$(\text{ImMe}_2\text{CH}_2)_2 \cdot \text{B}_2\text{N}_2 C_2$			
$\frac{M05-2X = -847.7155778}{N}$	0 5000000	0.04005100	1.02705000
IN N	-0.50020900	-2.04895100	-1.03/85800
N	0.56019500	-2.04903600	1.03777400
В	0.73249000	-1.98315500	-0.40715700
В	-0.73250020	-1.98316700	0.40707800
C	1.68926500	2.03364900	-0.55347600
С	2.41333700	1.69536600	0.53427400
Н	1.26985300	2.97147300	-0.85645100
Н	2.74653400	2.28157600	1.36685100
Ν	1.55595000	0.89536400	-1.31895200
Ν	2.71873400	0.35688200	0.41909800
\mathbf{C}	0.72079400	0.71783100	-2.50045100
Н	0.08793500	-0.15869000	-2.33140800
Н	0.11241800	1.60830300	-2.61298900
Н	1.34271000	0.58749300	-3.38183800
\mathbf{C}	3.29727700	-0.50048100	1.44828700
Н	3.51233300	0.11779700	2.31260600
Н	2.54958000	-1.26258000	1.68587400
Н	4.21996800	-0.94150700	1.08244500
\mathbf{C}	2.19079000	-0.12039100	-0.71517100
\mathbf{C}	2.15139200	-1.49938100	-1.13262600
Н	2.97781900	-2.06697400	-0.72062200
Н	2.08357000	-1.60307700	-2.20901800
\mathbf{C}	-2.41334200	1.69538900	-0.53421200
\mathbf{C}	-1.68924800	2.03363200	0.55353500
Н	-2.74654900	2.28162700	-1.36676500
Н	-1.26982400	2.97144400	0.85653300
Ν	-2.71875400	0.35690500	-0.41906900
Ν	-1.55593200	0.89532300	1.31897600
\mathbf{C}	-3.29730500	-0.50042400	-1.44828200
Н	-4.21997100	-0.94149500	-1.08243000
Н	-3.51241100	0.11789000	-2.31256200
Н	-2.54959500	-1.26249200	-1.68592700
\mathbf{C}	-0.72075500	0.71774900	2.50045300
Н	-0.11235700	1.60820500	2.61299400
Н	-1.34265400	0.58740600	3.38185200
н Н	-0.08791800	-0 15878200	2 33138100
C	-2.19079200	-0.12040800	0.71517500
$\widetilde{\mathbf{C}}$	-2 15139300	-1 49941100	1 13258500
Н	-2.97782700	-2.06699000	0 72057600
H	-2.08354900	-1.60314500	2.20897100
H H H C C H H H C C H H H H C H H H H C H	3.51233300 2.54958000 4.21996800 2.19079000 2.15139200 2.97781900 2.08357000 -2.41334200 -1.68924800 -2.74654900 -1.26982400 -2.71875400 -1.55593200 -3.29730500 -4.21997100 -3.51241100 -2.54959500 -0.72075500 -0.72075500 -0.11235700 -1.34265400 -0.08791800 -2.19079200 -2.15139300 -2.97782700 -2.08354900	0.11779700 -1.26258000 -0.94150700 -0.12039100 -1.49938100 -2.06697400 -1.60307700 1.69538900 2.03363200 2.28162700 2.97144400 0.35690500 0.89532300 -0.50042400 -0.94149500 0.11789000 -1.26249200 0.71774900 1.60820500 0.58740600 -0.15878200 -0.12040800 -1.49941100 -2.06699000 -1.60314500	$\begin{array}{c} 2.312606\\ 1.685874\\ 1.082445\\ -0.715171\\ -1.132626\\ -0.720622\\ -2.209018\\ -0.534212\\ 0.553535\\ -1.366765\\ 0.856533\\ -0.419069\\ 1.318976\\ -1.448282\\ -1.082430\\ -2.312562\\ -1.685927\\ 2.500453\\ 2.612994\\ 3.381852\\ 2.331381\\ 0.715175\\ 1.132585\\ 0.720576\\ 2.208971\end{array}$

$(\mathbf{Me}_{3}\mathbf{PCH}_{2})_{2} \cdot \mathbf{B}_{2}\mathbf{N}_{2} C_{2}$			
M05-2X = -1160.1654385			
N	0.63123900	-0.98919900	-0.35818800
Ν	-0.63123800	0.98918700	-0.35820700
В	-0.71011400	-0.46418500	-0.26669200
В	0.71011300	0.46417500	-0.26670400
Р	-3.38803100	-0.04315200	0.07223200
\mathbf{C}	-5.03133200	-0.77955700	0.32320200
Н	-5.79208800	-0.00309800	0.32733500
Н	-5.04936200	-1.30852300	1.27199100
Н	-5.23732300	-1.48276700	-0.47896300
\mathbf{C}	-3.12352400	1.13484500	1.40411500
Н	-3.09876400	0.60681500	2.35390300
Н	-3.92040400	1.87408400	1.40951200
Н	-2.14774500	1.57112600	1.16955200
\mathbf{C}	-3.43817600	0.84699400	-1.48939500
Н	-3.59429400	0.14073000	-2.30077900
Н	-4.24270200	1.57763100	-1.47304600
\mathbf{C}	-2.10545000	-1.27146000	0.05230200
Н	-2.05661100	-1.77324100	1.01733100
Н	-2.31304000	-2.01235600	-0.71845900
Н	-2.45125300	1.31193700	-1.56237000
Р	3.38803100	0.04315600	0.07223000
\mathbf{C}	5.03133700	0.77955900	0.32317400
Н	5.79209000	0.00309700	0.32730300
Н	5.04938500	1.30853500	1.27195600
Н	5.23731800	1.48276000	-0.47900200
\mathbf{C}	3.12350300	-1.13477300	1.40417000
Н	3.09868400	-0.60668300	2.35392500
Н	3.92040200	-1.87398900	1.40965100
Н	2.14774300	-1.57109100	1.16959800
\mathbf{C}	3.43818500	-0.84706700	-1.48935200
Н	3.59437600	-0.14085400	-2.30076700
Н	4.24267400	-1.57774500	-1.47293300
\mathbf{C}	2.10545600	1.27146800	0.05224000
Н	2.05663000	1.77330400	1.01724200
Н	2.31303700	2.01231700	-0.71856700
H	2.45124400	-1.31196900	-1.56233600

$\mathbf{B}_{3}\mathbf{N}_{3}$ D_{3h}			
M05-2X = -238.9225916			
В	0.00000000	1.10276700	0.00000000
В	0.95502400	-0.55138300	0.00000000
В	-0.95502400	-0.55138300	0.00000000
Ν	1.30833000	0.75536500	0.00000000
Ν	0.00000000	-1.51072900	0.00000000
N	-1.30833000	0.75536500	0.00000000

$ImMe_2 \cdot B_3N_3 C_1$			
M05-2X = -543.9069996			
В	2.87899000	0.90586600	0.06433100
В	0.96258600	-0.03828100	-0.00159400
В	2.89284700	-0.95780200	-0.06171200
Ν	1.59585000	1.26584800	0.08631700
Ν	1.61444400	-1.33387300	-0.08795100
Ν	3.86703900	-0.01895400	0.00287300
\mathbf{C}	-0.64905100	-0.01660200	-0.00267000
Ν	-1.50065200	-1.05691100	0.01205800
Ν	-1.41991400	1.08690300	-0.01603300
\mathbf{C}	-2.79495500	-0.61223700	0.01001200
\mathbf{C}	-1.15114900	-2.47519300	0.03929600
\mathbf{C}	-2.74351300	0.73786100	-0.00873800
\mathbf{C}	-0.96674300	2.47686000	-0.03728300
Н	-3.62794900	-1.28644100	0.02077200
Н	-0.07281200	-2.55381400	-0.02355800
Н	-1.51536000	-2.90719600	0.96611500
Н	-1.62451900	-2.96399500	-0.80614900
Н	-3.52473100	1.47105700	-0.01940000
Н	-0.40272100	2.69239900	0.85972700
Н	-0.31553300	2.63593100	-0.88527900
Н	-1.85339000	3.09791200	-0.10190100

$ImMe_2CH_2 \cdot B_3N_3 C_1$			
M05-2X = -583.2215575			
В	3.13834300	-0.05473400	1.06073100
В	1.43181700	-0.72624600	-0.06490300
В	3.35266400	-0.11946800	-0.80516900
Ν	1.87970900	-0.45363400	1.31105300
Ν	2.19500300	-0.53920700	-1.30608200
Ν	4.17197400	0.24547300	0.22930100
\mathbf{C}	-0.10295300	-1.25065000	-0.23428600
\mathbf{C}	-1.15315900	-0.21321600	-0.08326300
Н	-0.20550800	-1.70177400	-1.25597200
Ν	-2.47105900	-0.48821300	0.04816800
Ν	-1.04538800	1.12044800	-0.08654900
\mathbf{C}	-3.19887300	0.67751900	0.13303800
\mathbf{C}	-3.01680500	-1.83370400	0.08438300
\mathbf{C}	-2.30164700	1.68546600	0.04641300
\mathbf{C}	0.19261000	1.90669300	-0.19506400
Н	-4.27193100	0.68636800	0.23529000
Н	-2.78987300	-2.31157600	1.03868600
Н	-4.09548200	-1.76217600	-0.04421200
Н	-2.58337100	-2.41947500	-0.72700900
Н	-2.44149200	2.74775900	0.07212000
Н	-0.09414600	2.94925300	-0.34158700
Н	0.77287800	1.78552500	0.71942400
Н	0.77109200	1.54412000	-1.04499700
Н	-0.30300300	-2.04251000	0.51639800

$Me_3PCH_2 \cdot B_3N_3 C_1$			
M05-2X = -739.4419961			
В	2.52776900	-1.07349800	-0.00000200
В	3.27844400	0.63768700	0.00000700
В	1.14569500	0.56984800	-0.00001300
Ν	3.80033800	-0.61933300	0.00001100
Ν	2.26091000	1.49168700	-0.00000100
Ν	1.20186800	-0.90504700	-0.00001500
\mathbf{C}	-0.34150000	1.24020300	-0.00002500
Р	-1.62742700	0.01310800	0.00000100
Н	-0.46251100	1.87296600	-0.87879600
\mathbf{C}	-3.25899400	0.80382200	0.00000800
\mathbf{C}	-1.55731100	-1.02160000	-1.47130500
\mathbf{C}	-1.55728500	-1.02157000	1.47132700
Н	-4.04119900	0.04953200	0.00006100
Н	-3.35645200	1.42668300	-0.88470800
Н	-3.35640800	1.42675900	0.88467500
Н	-1.63257300	-0.38856500	-2.35155100
Н	-2.38082700	-1.73031100	-1.45843000
Н	-0.59680700	-1.52718900	-1.45341000
Н	-1.63256300	-0.38852300	2.35156300
Н	-2.38078300	-1.73030300	1.458463000
Н	-0.59676900	-1.52713800	1.45344100
Н	-0.46251000	1.87300600	0.87871800

$(\text{ImMe}_2)_2 \cdot \mathbf{B}_3 \mathbf{N}_3 C_2$			
M05-2X = -848.8593821			
В	-1.18830300	-0.71761000	-0.01390700
В	1.18830100	-0.71761500	0.01394000
В	-0.00000300	-2.41957000	0.00004200
Ν	0.00000100	0.06042000	0.00000600
Ν	1.30821900	-2.16210100	-0.00142600
Ν	-1.30822400	-2.16209600	0.00150100
\mathbf{C}	2.61637100	0.05063500	0.06424800
Ν	3.81068400	-0.47625500	-0.25902700
Ν	2.87209500	1.31067900	0.45635300
\mathbf{C}	4.80651700	0.44722300	-0.06925000
\mathbf{C}	4.05148100	-1.83368300	-0.73968700
\mathbf{C}	4.21598900	1.57419300	0.38470600
\mathbf{C}	1.87536600	2.26155300	0.92939000
Н	5.83461700	0.22586600	-0.27489100
Н	3.87739800	-2.54144200	0.05988000
Н	3.35571200	-2.06338200	-1.53460400
Н	5.07742900	-1.87316800	-1.09097700
Н	4.62762200	2.52504900	0.65852000
Н	1.91382700	3.15311600	0.30993000
Н	0.90806300	1.77126400	0.83637900
Н	2.09266300	2.52214800	1.96109900
\mathbf{C}	-2.61637000	0.05064300	-0.06424600
Ν	-2.87208100	1.31069100	-0.45634700
Ν	-3.81069400	-0.47624900	0.25898800
\mathbf{C}	-4.21597700	1.57420600	-0.38473800
\mathbf{C}	-1.87533800	2.26157500	-0.92933200
\mathbf{C}	-4.80652000	0.44723100	0.06918800
\mathbf{C}	-4.05151300	-1.83368200	0.73962400
Н	-4.62760000	2.52506600	-0.65855400
Н	-0.90805000	1.77123500	-0.83642400
Н	-2.09268500	2.52229400	-1.96099900
Н	-1.91372000	3.15307000	-0.30977100
Н	-5.83462700	0.22587200	0.27479300
Н	-3.87741700	-2.54143200	-0.05994900
Н	-3.35576300	-2.06339800	1.53455300
Н	-5.07747000	-1.87316400	1.09088900

$(ImMe_2CH_2)_2 \cdot B_3N_3 C_2$ M05-2X =-927.4820433			
В	-0.94826600	-0.29780000	0.71758800
В	0.94828200	-0.29779900	-0.71761400
В	0.00001100	-2.00187500	-0.00001100
Ν	0.00000500	0.48227600	-0.00001600
Ν	1.05555800	-1.75024700	-0.77755800
Ν	-1.05553400	-1.75025000	0.77753800
\mathbf{C}	2.20529400	0.50675900	-1.47358900
\mathbf{C}	3.25881200	0.38224100	-0.48732800
Н	2.47347100	0.00562000	-2.39657100
Ν	4.14858900	-0.61341100	-0.38745300
Ν	3.42882100	1.17180500	0.58224900
\mathbf{C}	4.88556700	-0.45480200	0.76581300
\mathbf{C}	4.20492600	-1.74695700	-1.30157700
\mathbf{C}	4.43709600	0.66309700	1.37163400
\mathbf{C}	2.57044900	2.30827100	0.88815700
Н	5.64693100	-1.15192900	1.05106200
Н	4.58948300	-1.42495600	-2.26529500
Н	4.87343800	-2.48482500	-0.87353700
Н	3.19763700	-2.15046200	-1.39143300
Н	4.73167000	1.13365300	2.28753900
Н	2.71527100	2.56355800	1.93167200
Н	2.84107800	3.15680200	0.26520100
Н	1.53601000	2.00446200	0.71237400
Н	1.94453800	1.54532700	-1.64261400
\mathbf{C}	-2.20527500	0.50674700	1.47357500
\mathbf{C}	-3.25881100	0.38223100	0.48733100
Н	-2.47343500	0.00560300	2.39655900
Ν	-4.14858400	-0.61342400	0.38745900
Ν	-3.42883900	1.17180600	-0.58223500
\mathbf{C}	-4.88558600	-0.45480300	-0.76579000
\mathbf{C}	-4.20490700	-1.74697900	1.30157600
\mathbf{C}	-4.43712800	0.66310300	-1.37160700
\mathbf{C}	-2.57047300	2.30827100	-0.88815200
Н	-5.64695800	-1.15192600	-1.05103000
Н	-4.58953100	-1.42500400	2.26527600
Н	-4.87335700	-2.48488000	0.87349600
Н	-3.19760300	-2.15043700	1.39146700
Н	-4.73171600	1.13366600	-2.28750400
Н	-2.71536000	2.56360500	-1.93164500
Н	-2.84104900	3.15678000	-0.26514200
Н	-1.53602500	2.00444900	-0.71243600
Н	-1.94452600	1.54531700	1.64260000

$(Me_3PCH_2)_2 \cdot B_3N_3 C_1$ M05-2X = -1239.9224708			
В	0.40891296	2.41675797	0.01937519
В	-1.37454800	1.37225691	-0.03369784
В	0.79179803	0.35852799	-0.03499592
Ν	-0.87806405	2.73485293	0.01074123
Ν	-0.60952296	0.16216994	-0.05493891
Ν	1.50294199	1.63809401	0.01325614
\mathbf{C}	1.77072908	-0.97561698	-0.07119100
Р	3.47439706	-0.48902892	0.00113300
Н	1.61329608	-1.54290394	-0.98842503
\mathbf{C}	4.56343311	-1.94675189	-0.02194109
\mathbf{C}	3.96598401	0.50323617	-1.42021496
\mathbf{C}	3.86956305	0.38333401	1.52617204
Н	5.60485110	-1.63938685	0.02859691
Н	4.39621112	-2.50662884	-0.93783812
Н	4.33287114	-2.58229994	0.82858688
Н	3.75414501	-0.05650179	-2.32760098
Н	5.02977700	0.71824420	-1.36219996
Н	3.36543598	1.40716214	-1.38440090
Н	3.60411909	-0.24908804	2.36955301
Н	4.93369504	0.60268805	1.55386704
Н	3.26879602	1.28777899	1.52714509
Н	1.56430811	-1.63412803	0.77235997
\mathbf{C}	-3.02293600	1.23858085	-0.05912982
Р	-3.49416394	-0.46477916	0.00281610
Н	-3.42271403	1.68309889	-0.96999379
\mathbf{C}	-5.30342793	-0.65659023	0.03135211
\mathbf{C}	-2.92348593	-1.37046007	-1.44488096
\mathbf{C}	-2.88765089	-1.26757622	1.49562705
Н	-5.57123790	-1.70967324	0.06516006
Н	-5.72643896	-0.20420120	-0.86114086
Н	-5.70475894	-0.15313729	0.90637414
Н	-3.34702596	-0.91483304	-2.33612893
Н	-3.23570089	-2.40936009	-1.37771001
Н	-1.84065593	-1.26315103	-1.43337397
Н	-3.27473490	-0.73851628	2.36262508
Н	-3.21551186	-2.30349623	1.51884800
Н	-1.80463790	-1.17809818	1.44365704
Н	-3.45913601	1.76108680	0.79122621

$(ImMe_2CH_2)_2 \cdot B_2N_2 C_1$			
M05-2X = -1271.7042346			
В	-1.43559600	0.03283800	0.54323100
В	0.09907700	0.98757900	-0.90150700
В	0.11392100	-1.28625600	-0.54079500
Ν	-1.01543200	1.24337200	-0.06085400
Ν	0.77188800	-0.22085400	-1.20587800
Ν	-0.94578900	-1.29189700	0.39364800
\mathbf{C}	0.81673300	2.41099000	-1.55881800
\mathbf{C}	1.58269100	2.86349900	-0.43313100
Н	1.44146900	2.14255200	-2.40171800
Ν	2.81107300	2.43743400	-0.08989200
Ν	1.16695100	3.67675300	0.55156600
\mathbf{C}	3.16342700	2.97666900	1.12970900
\mathbf{C}	3.53907100	1.43200600	-0.84498600
\mathbf{C}	2.13486100	3.74895300	1.53056200
\mathbf{C}	-0.17639200	4.23118000	0.61603400
Н	4.10188400	2.75688400	1.59669200
Н	3.97476600	1.87462400	-1.73810600
Н	4.32678700	1.04140000	-0.20940000
Н	2.82789600	0.64154800	-1.10250800
Н	1.99919600	4.33310300	2.41795300
Н	-0.30874000	4.67169500	1.59807300
Н	-0.29749000	4.99823800	-0.14500800
Н	-0.86892500	3.39883800	0.46394100
Н	0.03645000	3.11253500	-1.82679700
\mathbf{C}	-2.85173200	0.15650000	1.50678600
\mathbf{C}	-3.85375200	-0.19726700	0.53834800
Н	-2.80545000	-0.55973500	2.31815800
Ν	-4.28472500	-1.43492800	0.24701400
Ν	-4.43226400	0.63359500	-0.34507100
\mathbf{C}	-5.13101800	-1.38427200	-0.83981500
\mathbf{C}	-3.77879500	-2.63273500	0.90034800
\mathbf{C}	-5.22458400	-0.09186900	-1.20934400
\mathbf{C}	-4.11801400	2.05097900	-0.43390000
Н	-5.57582500	-2.26705400	-1.25198100
Н	-4.17423000	-2.69877100	1.91115900
H	-4.11009900	-3.49049700	0.32551000
H	-2.68736200	-2.56162300	0.89786700
Н	-5.76750800	0.37461100	-2.00601200
Н	-4.50002000	2.41917900	-2.00601200

$(ImMe_2CH_2)_3 \cdot B_3N_3 \text{ (cont'd.)}$			
Н	-4.59189800	2.58962200	0.38342700
Н	-3.02944900	2.14847200	-0.39443300
Н	-2.96818600	1.17459800	1.85836500
\mathbf{C}	0.78750300	-2.85053500	-0.85727700
\mathbf{C}	2.07238600	-2.71550600	-0.24701600
Н	0.16331000	-3.58655900	-0.36748900
Ν	3.20807500	-2.31310600	-0.84098900
Ν	2.33647300	-2.82021100	1.06782200
\mathbf{C}	4.19318800	-2.14985300	0.11156000
\mathbf{C}	3.28161300	-1.95699100	-2.24877400
\mathbf{C}	3.64902900	-2.46810800	1.30284000
\mathbf{C}	1.31326400	-3.11134000	2.06027500
Н	5.18326800	-1.83150100	-0.14575400
Н	2.46361200	-1.26215300	-2.44686600
Н	4.24119200	-1.48280300	-2.42616600
Н	3.20254100	-2.84960900	-2.86397900
Н	4.07063100	-2.47864900	2.28753200
Н	1.68101900	-2.78823900	3.02778900
Н	0.41139800	-2.55420100	1.79323100
Н	1.10976400	-4.17915200	2.08660700
H	0.85236000	-3.00304000	-1.92711700

$(Me_3PCH_2)_3 \cdot B_3N_3 C_1$ M05-2X = -1740.3584081			
В	-0.13805400	0.87058900	-0.59184700
В	-1.60659900	-0.33461100	0.75397400
В	0.39837400	-1.28965500	0.10537600
Ν	-1.40778400	0.87951200	0.03136100
Ν	-0.77901600	-1.47562800	0.84809600
Ν	0.87758400	-0.12835100	-0.59083300
\mathbf{C}	1.36567800	-2.68739600	0.02395300
Р	3.05715100	-2.22583100	-0.03013700
Н	1.12322500	-3.23772200	-0.88457200
\mathbf{C}	4.23249300	-3.59986400	0.18470800
\mathbf{C}	3.45726500	-1.44771500	-1.60274400
\mathbf{C}	3.41090500	-1.08979300	1.32788300
Н	5.25607000	-3.23389100	0.15578200
Н	4.08371800	-4.32197500	-0.61309100
Н	4.04614400	-4.08433500	1.13918000
Н	3.42629300	-2.20369300	-2.38364800
Н	4.44375400	-0.99247000	-1.56774800
Н	2.65535900	-0.71289400	-1.73595700
Н	3.26951600	-1.62052300	2.26593400
Н	4.42828700	-0.71368500	1.26379300
Н	2.68173600	-0.28871400	1.24734600
Н	1.16245200	-3.30397100	0.89577900
\mathbf{C}	-3.14199200	-0.52920300	1.42664600
Р	-4.13607000	-0.66858200	-0.01982500
Н	-3.48388500	0.33184800	1.99751900
\mathbf{C}	-5.76240500	-1.44003800	0.25615500
\mathbf{C}	-4.42384400	0.96541100	-0.71574200
\mathbf{C}	-3.31843200	-1.68913200	-1.26347300
Н	-6.33402100	-1.46469200	-0.66828600
Н	-6.30463600	-0.86997100	1.00515300
Н	-5.61528100	-2.45351500	0.61943500
Н	-5.10403400	1.51651600	-0.07140200
Н	-4.83710200	0.88750400	-1.71767400
Н	-3.42617000	1.42087600	-0.71007800
Н	-2.93702400	-2.58110000	-0.77360400
Н	-4.01515900	-1.93526900	-2.06087300
Н	-2.46501900	-1.12670700	-1.63376000
Н	-3.17920200	-1.44855100	2.00374200
\mathbf{C}	0.27327700	2.36873900	-1.26776800

$(\mathbf{Me}_{3}\mathbf{PCH}_{2})_{3}$ · $\mathbf{B}_{3}\mathbf{N}_{3}$ (cont'd.)			
Р	1.30553500	3.03992300	-0.01333400
Н	-0.62622800	2.96608400	-1.38054300
\mathbf{C}	2.94911000	2.32564600	-0.20912800
\mathbf{C}	1.49658900	4.84981200	-0.04633800
\mathbf{C}	0.69616600	2.64384300	1.63740900
Н	3.55339400	2.47799200	0.68076600
Н	3.43541400	2.77049100	-1.07322100
Н	2.74233800	1.26737800	-0.38858500
Н	1.86419000	5.15266800	-1.02254200
Н	2.19162700	5.17440900	0.72401800
Н	0.52626200	5.30770600	0.12549000
Н	0.77461500	1.56810000	1.77689400
Н	1.26477500	3.19375400	2.38362900
Н	-0.36223800	2.88707800	1.67267900
Н	0.84864300	2.30643000	-2.18936000

$(ImMe_2)_3 \cdot B_3N_3 C_2$			
M05-2X = -1153.7788135			
В	0.66115700	-1.16633200	0.02445000
В	0.66081500	1.16654400	-0.02452800
В	-1.33925500	-0.00021800	0.00003200
Ν	1.46270100	0.00022100	-0.00006300
Ν	-0.74842500	1.28407100	0.05606800
Ν	-0.74805500	-1.28431100	-0.05608900
С	1.49082100	2.58869300	-0.18949400
Ν	1.03966500	3.83683000	0.04345000
Ν	2.76079300	2.75348300	-0.61083400
\mathbf{C}	2.01311200	4.76728300	-0.21951800
\mathbf{C}	3.09886200	4.08344300	-0.63659500
Н	1.84579900	5.81806700	-0.09088300
Н	4.06656600	4.41881200	-0.95240300
\mathbf{C}	1.49156400	-2.58825600	0.18945200
Ν	2.76152200	-2.75272800	0.61096500
Ν	1.04078000	-3.83651300	-0.04363400
С	3.09995000	-4.08260100	0.63669800
Č	2.01443400	-4.76670900	0.21946300
Ĥ	4 06767500	-4 41772000	0.95270700
H	1.84742800	-5.81753800	0.09077800
C	-2.98382600	-0.00043900	0.00008700
Ň	-379989600	0.82407300	0.67850900
N	-3 79967700	-0.82517900	-0 67834400
C	-5 11703600	0.51869200	0.43086500
Č	-5 11690300	-0.52009400	-0 43075700
U H	-5 92503800	1.05618800	0.45019100
H	-5 92476700	-1.05780500	-0.88578100
C	-0.29258200	-4 17521400	-0.52021100
U H	-0.91246400	-3 20721300	-0.33128700
Н	-0.25467000	-4 30027000	-1 58330100
Н	-0.64218900	-5.04673700	0.025/15800
C II	3 66080700	1 60008700	1.04149400
н	4 55357200	1 70811000	0.42145600
11 11	4.0007200 3.11782000	-1.70311000	0.42145000 0.00657200
11 Н	3.03305200	-0.75409400 1 85719700	0.90001200 2.07001400
	3.33333200	-1.85712700	2.07991400
	-3.34955600 2.96716100	-1.80550000 1.00627200	-1.38913200
11 11	-2.20710100	-1.90037300	-1.49804900
11	-3.10404000	-2.01009000	-1.29105500
п	-5.05809500	-1.02030100	-2.00140400
C	-5.54999100	1.00430000	1.00920900
н	-2.20709300	1.90028300	1.49803000
Н	-3.78556400	2.81413600	1.29168000
H	-3.65819900	1.61916000	2.60174600
C	3.66045000	1.69198000	-1.04111900
H	4.55300100	1.70922000	-0.42085500
H	3.11762300	0.75575000	-0.90655900
Н	3.93390800	1.85831000	-2.07949400
C	-0.29392500	4.17519600	0.51964300
Н	-0.91351500	3.29699300	0.33068000
H	-0.25634800	4.39934200	1.58282300
Н	-0.64363500	5.04658100	-0.02617700

$\overline{(\text{ImMe}_2)_3 \cdot \text{BN} \cdot \text{BH}_3(C_1)}$			
M05-2X = -411.1686683			
В	-1.30978013	-0.02280891	-0.00039906
Ν	-2.54265213	-0.02056791	-0.00105807
\mathbf{C}	0.20503187	-0.00566692	0.00002695
\mathbf{C}	2.32688187	-0.65134393	0.00060701
\mathbf{C}	2.30717088	0.70148307	0.00056990
Н	3.14807787	-1.33994693	0.00088306
Н	3.10809188	1.41357307	0.00082785
Ν	1.02069487	-1.07067792	0.00027803
Ν	0.98945088	1.08264208	0.00018987
\mathbf{C}	0.56139387	-2.45283492	-0.00070086
Н	-0.52331613	-2.44254391	0.00362913
Н	0.92101387	-2.95374299	-0.89290182
Н	0.92830586	-2.95721685	0.88654218
\mathbf{C}	0.48924088	2.45073008	-0.00067124
Н	0.83560989	2.96251101	-0.89193128
Н	-0.59478812	2.40822609	0.00173776
Н	0.83962988	2.96499415	0.88757372
В	-4.07280913	-0.01515890	-0.00045908
Н	-4.45592412	1.11853308	-0.22208316
Н	-4.45648312	-0.78664397	-0.86177202
H	-4.44804313	-0.39188181	1.09692595

$(ImMe_2)_3 \cdot BNBN \cdot BH_3 (C_1)$			
M05-2X = -490.796326			
В	0.38975896	0.00280498	-0.00176798
Ν	1.62853896	0.00386898	-0.00261496
В	3.02519396	0.00429598	-0.00319293
Ν	4.26542296	0.00363798	-0.00285091
\mathbf{C}	-1.12327304	0.00044898	-0.00050801
\mathbf{C}	-3.23055404	0.67425898	0.00034903
\mathbf{C}	-3.22819904	-0.68067802	0.00252988
Н	-4.04380704	1.37255998	0.00033810
Н	-4.03902804	-1.38179002	0.00399178
Ν	-1.92264504	1.07870598	-0.00193390
Ν	-1.91889304	-1.08058302	0.00236086
\mathbf{C}	-1.45361504	2.46000998	0.00095526
Н	-0.36997704	2.45194698	-0.03974672
Н	-1.84786102	2.97497807	-0.86782168
Н	-1.78095405	2.95075187	0.91076731
\mathbf{C}	-1.44506804	-2.46025902	-0.00102029
Н	-1.77491102	-2.95317192	-0.90874535
Н	-0.36128804	-2.44837503	0.03464973
Н	-1.83348505	-2.97559212	0.87016864
В	5.78621196	0.00013798	0.00091812
Н	6.17292594	-0.28666315	1.12913709
Н	6.18865198	-0.84922093	-0.78262397
Н	6.20119697	1.10628701	-0.30846375

$(ImMe_2)_3 \cdot B_2 N_2 \cdot BH_3 (C_1)$			
M05-2X = -490.8127653			
Ν	2.33759599	0.01319495	-0.17312680
Ν	1.34143884	-2.11050847	-0.53169570
В	1.00044028	-0.71366158	-0.27785386
В	2.44450553	-1.33447003	-0.36603567
\mathbf{C}	-0.40487799	-0.06320711	-0.12883704
\mathbf{C}	-2.04508457	1.40767427	-0.01091132
\mathbf{C}	-2.57272411	0.18016308	0.22185574
Н	-2.50506594	2.37504609	-0.04453945
Н	-3.57816002	-0.12459729	0.43354267
Ν	-0.70863148	1.23558777	-0.22737419
Ν	-1.54514476	-0.71495853	0.13659391
\mathbf{C}	0.23122012	2.32450910	-0.49741920
Н	1.13403732	1.90844042	-0.92433308
Н	-0.24591908	3.01440386	-1.18467030
Н	0.49277785	2.80714829	0.43643878
\mathbf{C}	-1.67354222	-2.15774356	0.33415203
Н	-2.48011802	-2.52099793	-0.29296702
Н	-0.73434202	-2.62068322	0.05314315
Н	-1.89541924	-2.35329255	1.37793102
В	2.65760449	0.99586318	1.06434614
Н	3.52756462	0.50228258	1.74315327
Н	2.97376311	2.09023427	0.64511108
Н	1.61137240	1.07177283	1.71108504

$(ImMe_2)_3 \cdot B_3 N_3 \cdot BH_3 \cdot ortho (C_1)$			
M05-2X = -570.5681327			
В	2.88562006	0.39997071	0.23397014
В	0.82966401	-0.24999409	-0.18486390
В	2.68418793	-1.19013424	-0.74471691
Ν	1.61199310	0.80115982	0.47204714
Ν	1.37755092	-1.38949612	-0.87039194
Ν	3.74569399	-0.47176735	-0.29770988
\mathbf{C}	-0.76221898	-0.12466195	-0.11472792
Ν	-1.60503807	-1.10258388	0.24026204
Ν	-1.51671088	0.92984013	-0.43529889
\mathbf{C}	-2.89843003	-0.65358977	0.16569804
\mathbf{C}	-1.21041920	-2.42919593	0.69897700
\mathbf{C}	-2.84200291	0.62630324	-0.26516292
\mathbf{C}	-1.02336976	2.22883410	-0.87349585
Н	-3.73327109	-1.27615070	0.41795001
Н	-0.26598321	-2.67990300	0.23251800
Н	-1.11252621	-2.42823798	1.77986500
Н	-1.97543526	-3.13554586	0.39766697
Н	-3.61876784	1.33600732	-0.46798591
Н	-1.16368470	2.95044509	-0.07778382
Н	0.03702524	2.14879401	-1.07072484
Н	-1.55872172	2.51852418	-1.77160484
В	1.10875419	1.96745083	1.48882717
Н	1.83954118	1.94794173	2.45224318
Н	1.17030829	3.03275384	0.91042621
Н	-0.03539384	1.69269892	1.80125815

$(ImMe_2)_3 \cdot B_3 N_3 \cdot BH_3 \cdot para (C_1)$			
M05-2X = -570.5472887			
В	2.41748493	0.88757502	0.09622814
В	0.48771594	-0.05892700	-0.00378891
В	2.40644095	-1.04030597	-0.10306395
Ν	1.14695092	1.22865300	0.12870416
Ν	1.12908896	-1.35626799	-0.13638797
Ν	3.38484694	-0.08349197	-0.00300890
\mathbf{C}	-1.11823906	-0.01399502	-0.00393691
Ν	-1.98396105	-1.04210104	0.01654704
Ν	-1.87089908	1.10157897	-0.02273386
\mathbf{C}	-3.27023106	-0.57737105	0.01408006
\mathbf{C}	-1.66114503	-2.46703504	0.06476797
\mathbf{C}	-3.19845307	0.77222495	-0.01270987
\mathbf{C}	-1.39839109	2.48593497	-0.05508179
Н	-4.11360405	-1.23847907	0.02924003
Н	-0.59866203	-2.58008801	-0.10097203
Н	-1.93491803	-2.85710209	1.03989395
Н	-2.23066302	-2.97213400	-0.70800506
Н	-3.96888308	1.51665894	-0.02899884
Н	-0.84184710	2.70498394	0.84576623
Н	-0.74138410	2.62885002	-0.90158978
Н	-2.27546310	3.11795297	-0.13452476
В	5.05454994	0.06188905	0.00979111
Н	5.42844194	-0.57350399	0.96283407
Н	5.42696994	-0.38327189	-1.04611092
Н	5.25562292	1.24782805	0.12207516

$(ImMe_2)_3 \cdot BN \cdot W(CO)_5 (C_1)$			
M05-2X = -1018.8598516			
В	0.00000000	-0.00000000	-1.98744396
Ν	0.00000000	-0.00000000	-0.74698196
\mathbf{C}	0.00000000	-0.00000000	-3.50454296
\mathbf{C}	0.00000000	0.67655700	-5.61638996
\mathbf{C}	0.00000000	-0.67655700	-5.61638996
Н	0.00000000	1.37692900	-6.42762796
Н	0.00000000	-1.37692900	-6.42762796
Ν	0.00000000	1.07703500	-4.30472696
Ν	0.00000000	-1.07703500	-4.30472696
\mathbf{C}	0.00000000	2.45374800	-3.82842296
Н	0.00000000	2.43141000	-2.74401796
Н	0.88969288	2.96067004	-4.18563496
Н	-0.88969288	2.96067004	-4.18563496
\mathbf{C}	0.00000000	-2.45374800	-3.82842296
Н	0.88969288	-2.96067004	-4.18563496
Н	0.00000000	-2.43141000	-2.74401796
Н	-0.88969288	-2.96067004	-4.18563496
W	0.00000000	-0.00000000	1.42790704
\mathbf{C}	0.00000000	-2.05087400	1.39442304
\mathbf{C}	0.00000000	-0.00000000	3.41224604
\mathbf{C}	2.05191500	-0.00000000	1.49269404
\mathbf{C}	-0.00000000	2.05087400	1.39442304
\mathbf{C}	-2.05191500	-0.00000000	1.49269404
О	-3.18737200	0.00000000	1.59206004
О	0.00000000	-3.19088600	1.38277104
О	0.00000000	-0.00000000	4.56272704
О	3.18737200	0.00000000	1.59206004
О	-0.00000000	3.19088600	1.38277104

$(ImMe_2)_3 \cdot BNBN \cdot W(CO)_5 (C_1)$			
M05-2X = -1098.4921553			
В	0.00000000	0.00000000	3.79210627
Ν	0.00000000	0.00000000	2.55225627
В	0.00000000	0.00000000	1.15664527
Ν	0.00000000	0.00000000	-0.09242373
\mathbf{C}	0.00000000	0.00000000	5.30473727
\mathbf{C}	-0.00086012	0.67753800	7.41096726
\mathbf{C}	0.00086012	-0.67753800	7.41096726
Н	-0.00112441	1.37700601	8.22326425
Н	0.00112441	-1.37700601	8.22326425
Ν	-0.00204428	1.08019498	6.10280425
Ν	0.00204428	-1.08019498	6.10280425
\mathbf{C}	0.00471616	2.46112597	5.63303923
Н	-0.05680783	2.45383193	4.55043123
Н	-0.85187306	2.98378463	6.04343621
Н	0.92475096	2.94435735	5.94270522
\mathbf{C}	-0.00471616	-2.46112597	5.63303923
Н	-0.92475096	-2.94435735	5.94270522
Н	0.05680783	-2.45383193	4.55043123
Н	0.85187306	-2.98378463	6.04343621
W	0.00000000	0.00000000	-2.24710873
\mathbf{C}	1.33703357	1.55843038	-2.27791575
\mathbf{C}	1.55021176	-1.34642353	-2.29284270
\mathbf{C}	-1.33703357	-1.55843038	-2.27791575
\mathbf{C}	-1.55021176	1.34642353	-2.29284270
\mathbf{C}	0.00000000	0.00000000	-4.23006173
О	-2.40650665	2.09455884	-2.38042278
О	2.07570721	2.42418768	-2.35050676
О	0.00000000	0.00000000	-5.38345373
О	2.40650665	-2.09455884	-2.38042278
О	-2.07570721	-2.42418768	-2.35050676

$(ImMe_2)_3 \cdot B_2 N_2 \cdot W(CO)_5 (C_1)$			
M05-2X = -1098.4998056			
Ν	0.26539289	0.64371056	-1.61514919
Ν	1.87634583	2.40666962	-1.60792263
В	1.69421989	1.02291470	-1.18793033
В	0.63983084	1.92590651	-1.91472648
\mathbf{C}	2.71057395	0.09625489	-0.45740717
\mathbf{C}	3.80374504	-1.67529192	0.27822317
\mathbf{C}	4.34425003	-0.58018977	0.86577391
Н	4.04312207	-2.71524789	0.37567539
Н	5.14178305	-0.48513159	1.57516786
Ν	2.79811899	-1.23612412	-0.53438088
Ν	3.66157497	0.50398510	0.39068171
\mathbf{C}	1.94365298	-2.10127233	-1.34316266
Н	1.21367094	-1.47894846	-1.84757177
Н	2.55809697	-2.63086346	-2.06337657
Н	1.43976003	-2.80428220	-0.68872449
\mathbf{C}	3.90022895	1.89049620	0.78887440
Н	4.96985294	2.06611423	0.79207832
Н	3.41014290	2.53610703	0.06883228
Н	3.49164298	2.05106340	1.78111638
W	-1.18309303	-0.00621812	0.04948901
\mathbf{C}	0.20400705	-0.84729182	1.24133714
\mathbf{C}	-0.90040104	1.75994211	1.06747762
\mathbf{C}	-2.74700910	0.80552559	-1.07043210
\mathbf{C}	-2.50569395	-0.51972687	1.41549118
\mathbf{C}	-1.43884700	-1.82995532	-0.84895858
О	-1.57288299	-2.87615842	-1.28192035
О	-3.27565891	-0.81603372	2.21587727
О	-0.76271304	2.69277925	1.70559641
О	0.94280409	-1.35259064	1.96301222
О	-3.64236313	1.22182744	-1.62731615

$(ImMe_2)_3 \cdot B_3 N_3 \cdot W(CO)_5 \cdot ortho (C_1)$			
M05-2X = -1178.2522794			
В	-0.15780330	2.66867635	0.75612335
В	-1.87803361	1.38612357	0.37829809
В	-1.79726721	3.52916398	0.47315399
Ν	-0.42868771	1.35145504	0.64325189
Ν	-2.68809522	2.56355626	0.25772518
Ν	-0.53622235	3.95353443	0.73799091
\mathbf{C}	-2.61067777	-0.02721343	0.20966211
Ν	-3.36438744	-0.41312396	-0.82444446
Ν	-2.62122532	-1.03643799	1.08753768
\mathbf{C}	-3.83959622	-1.68264238	-0.60754247
\mathbf{C}	-3.61670255	0.38172059	-2.02187348
\mathbf{C}	-3.37642820	-2.07232098	0.60075099
\mathbf{C}	-1.99501378	-1.00947925	2.40356545
Н	-4.45087419	-2.19238690	-1.32490623
Н	-3.49155773	1.42575496	-1.76162535
Н	-2.92206928	0.09623861	-2.80432140
Н	-4.63687321	0.20256252	-2.34153985
Н	-3.50556336	-2.98666643	1.14412567
Н	-1.59475256	-1.99390355	2.61450388
Н	-1.18920876	-0.28549403	2.38135837
Н	-2.73107691	-0.73224006	3.15127915
W	1.19752943	-0.14802724	-0.07803385
\mathbf{C}	0.27900266	-1.88603028	0.38863734
\mathbf{C}	2.01411356	-0.10290715	1.81737282
\mathbf{C}	2.62457426	-1.33502297	-0.73085244
\mathbf{C}	2.44950998	1.36990500	-0.72840805
\mathbf{C}	0.24543393	-0.20048591	-1.88342213
0	2.45500922	-0.11771874	2.86442856
0	-0.13511510	-2.93466565	0.59859799
0	3.45616292	-2.02751246	-1.11448837
0	-0.31641395	-0.26478169	-2.87454587
0	3.22727562	2.08896667	-1.13949427

$(ImMe_2)_3 \cdot B_3 N_3 \cdot W(CO)_5 \cdot para (C_1)$			
M05-2X = -1178.2389328			
В	1.14628863	-0.88528988	0.09680199
В	3.07386486	0.05817184	-0.00402560
В	1.15240809	1.01879982	-0.10350478
Ν	2.41619455	-1.23248157	0.13100608
Ν	2.42599717	1.35349634	-0.13904749
Ν	0.16676786	0.07061804	-0.00283058
\mathbf{C}	4.67882586	0.01893273	-0.00413147
Ν	5.54023089	1.05070289	0.01427116
Ν	5.43570581	-1.09381251	-0.02089148
\mathbf{C}	6.82801487	0.59098779	0.01270156
\mathbf{C}	5.21269691	2.47485345	0.06150832
\mathbf{C}	6.76165982	-0.75910549	-0.01160311
\mathbf{C}	4.96907077	-2.48037782	-0.05097140
Н	7.66883789	1.25537689	0.02652436
Н	4.15328222	2.58662541	-0.12241772
Н	5.46747430	2.86250966	1.04270231
Н	5.79535220	2.98330971	-0.69903953
Н	7.53518380	-1.50036071	-0.02676434
Н	4.41328326	-2.70021648	0.85013319
Н	4.31357817	-2.62779947	-0.89787780
Н	5.84876086	-3.10880977	-0.12874174
W	-2.16404115	0.00224522	0.00026232
\mathbf{C}	-2.17887398	-1.53326235	-1.36129613
\mathbf{C}	-2.18832480	-1.35230014	1.54142578
\mathbf{C}	-4.12304916	-0.04959763	0.00208866
\mathbf{C}	-2.25491232	1.53541083	1.36418563
\mathbf{C}	-2.26038650	1.35411858	-1.54268630
О	-2.25611278	-2.38281897	-2.11516854
Ο	-5.27196616	-0.07972654	0.00308409
О	-2.27449327	-2.10145738	2.39440921
О	-2.38475203	2.09654982	-2.39639300
О	-2.37294053	2.37835148	2.11967179

$\mathbf{ImMe}_2 \cdot \mathbf{B}_2 \mathbf{N}_2 \cdot (\mathbf{BH}_3)_2 \ (C_2)$			
M05-2X = -517.473553			
N	0.22253853	1.14499445	-1.97064321
Ν	-0.22253853	-1.14499445	-1.97064321
В	-0.00000000	0.00000000	-1.05377440
В	-0.00000000	0.00000000	-2.66270840
\mathbf{C}	-0.00000000	0.00000000	0.49638660
\mathbf{C}	-0.25114988	0.62986254	2.59218470
\mathbf{C}	0.25114988	-0.62986254	2.59218470
Н	-0.51493347	1.28142885	3.40119481
Н	0.51493347	-1.28142885	3.40119481
Ν	-0.39538636	1.00286754	1.28776876
Ν	0.39538636	-1.00286754	1.28776876
\mathbf{C}	-0.91169232	2.30052993	0.85140698
Н	-1.04611277	2.28548524	-0.22152003
Н	-1.85420478	2.47883573	1.35725200
Н	-0.18519210	3.06794618	1.08961511
\mathbf{C}	0.91169232	-2.30052993	0.85140698
Н	0.18519210	-3.06794618	1.08961511
Н	1.04611277	-2.28548524	-0.22152003
Н	1.85420478	-2.47883573	1.35725200
В	1.05568162	2.49626557	-1.74160597
Н	1.89373280	2.57457505	-2.60409395
Н	0.28473476	3.43203767	-1.75665782
Н	1.56567116	2.37052584	-0.63714198
В	-1.05568162	-2.49626557	-1.74160597
Н	-1.89373280	-2.57457505	-2.60409395
Н	-0.28473476	-3.43203767	-1.75665782
Н	-1.56567116	-2.37052584	-0.63714198

$ \frac{(\text{ImMe}_2)_2 \cdot B_2 N_2 \cdot (BH_3)_2 (C_s)}{M05-2X = -822.4890566} $			
N	-0.14148669	1.12732236	0.00000000
Ν	-0.71041884	-1.04557115	0.00000000
В	-0.33150552	0.00632084	0.89354505
В	-0.33150552	0.00632084	-0.89354505
\mathbf{C}	-0.05051355	-0.00028541	2.45175405
\mathbf{C}	0.17855604	0.70261673	4.53793306
\mathbf{C}	0.44370656	-0.62551836	4.51698403
Н	0.17820262	1.40729472	5.34539208
Н	0.72259625	-1.30032258	5.30143801
Ν	-0.12425610	1.06805115	3.25609308
Ν	0.29275027	-1.03932314	3.22236202
С	-0.45473735	2.43038677	2.84282311
Н	-0.85265461	2.39911893	1.83709312
Н	-1.18231018	2.83041050	3.54119613
Н	0.44906837	3.02791964	2.82899511
\mathbf{C}	0.50362845	-2.40854479	2.76109798
Н	-0.20716071	-3.06257919	3.25361098
Н	0.32863208	-2.45327239	1.69371599
Н	1.52044812	-2.70349883	2.99922096
\mathbf{C}	-0.05051355	-0.00028541	-2.45175405
\mathbf{C}	0.17855604	0.70261673	-4.53793306
С	0.44370656	-0.62551836	-4.51698403
Н	0.17820262	1.40729472	-5.34539208
Н	0.72259625	-1.30032258	-5.30143801
Ν	-0.12425610	1.06805115	-3.25609308
Ν	0.29275027	-1.03932314	-3.22236202
\mathbf{C}	-0.45473735	2.43038677	-2.84282311
Н	-0.85265461	2.39911893	-1.83709312
Н	0.44906837	3.02791964	-2.82899511
Н	-1.18231018	2.83041050	-3.54119613
\mathbf{C}	0.50362845	-2.40854479	-2.76109798
Н	1.52044812	-2.70349883	-2.99922096
Н	0.32863208	-2.45327239	-1.69371599
Н	-0.20716071	-3.06257919	-3.25361098
В	1.02734968	2.18766113	0.00000000
Н	0.58326671	3.33174564	0.00000000
Н	1.72630937	2.01856159	0.99671706
В	-1.38906702	-2.46111679	0.00000000
Н	-0.52942903	-3.34899358	0.00000000
Н	-2.06985995	-2.58212844	1.00585103
Н	-2.06985995	-2.58212844	-1.00585103
H	1.72630937	2.01856159	-0.99671706

$\overline{(ImMe_2)_2 \cdot B_3 N_3 \cdot (BH_3)_3 (C_1)} \\ M05-2X = -928.8776936$			
В	1.20746506	0.46461983	-0.20060712
В	-1.23470995	0.42406010	-0.20682913
В	-0.02259477	2.01543075	-1.01548055
Ν	-0.00236402	-0.19846495	0.13307205
Ν	-1.31655280	1.71426293	-0.87128748
Ν	1.27462220	1.75022265	-0.87022347
\mathbf{C}	-2.62079603	-0.28696067	0.11630005
Ν	-3.54629699	0.13755667	0.97560393
Ν	-3.09425114	-1.39713577	-0.44847566
\mathbf{C}	-4.62231408	-0.71104022	0.95502215
\mathbf{C}	-3.44272386	1.37450386	1.73702260
\mathbf{C}	-4.33605718	-1.68152649	0.05678241
\mathbf{C}	-2.35859422	-2.18549311	-1.42565144
Н	-5.48496607	-0.55349996	1.57015110
Н	-2.50331286	1.38045490	2.27925560
Н	-3.48664576	2.21404168	1.04908737
Н	-4.26641486	1.41045814	2.43972258
Н	-4.89859927	-2.53662352	-0.25901236
Н	-2.96216731	-3.04473311	-1.69202321
Н	-2.17508615	-1.58167937	-2.30847960
Н	-1.42240026	-2.50666909	-0.97782334
\mathbf{C}	2.60924798	-0.19764622	0.15817607
Ν	3.33034400	0.02080299	1.25411901
Ν	3.29383390	-1.05071050	-0.59882670
\mathbf{C}	4.49196492	-0.70541115	1.19612622
\mathbf{C}	2.89744209	0.89755433	2.33008178
\mathbf{C}	4.47076186	-1.38038446	0.02368440
\mathbf{C}	2.84133186	-1.49408580	-1.90740358
Н	5.22123892	-0.67956002	1.98019922
Н	1.98695504	0.49513854	2.76374388
Н	3.67968508	0.93613344	3.07828377
Н	2.72977920	1.88955424	1.92186551
Н	5.17955379	-2.05365066	-0.41402941
Н	1.83241882	-1.88242667	-1.80826349
Н	2.86786196	-0.65296099	-2.59370781
Н	3.50227578	-2.27965597	-2.25289037
В	0.10788582	-1.59901975	0.90456242
Н	0.55916474	-2.44199101	0.13622665
Н	0.86024783	-1.47250458	1.85514540
В	2.69641328	2.45573539	-1.24027264
Н	3.31921420	1.64879715	-1.90503442
Н	2.46689440	3.46635925	-1.85316292
В	-2.66311372	2.45126192	-1.42765369
Н	-3.54455881	1.61346902	-1.41354247
Н	-2.90911362	3.37889015	-0.68490294
Н	-0.99307121	-1.93301352	1.29872051
Н	-2.43550167	2.83303160	-2.54937879
Н	3.26289330	2.67940061	-0.18746270

$(ImMe_2)_3 \cdot B_3 N_3 \cdot (BH_3)_3 (C_1)$			
$\frac{1003-2X = -1235.872235}{B}$	-1.36188115	-0.19843015	-0.13063997
В	0.50369974	1.28815373	-0.01096499
В	0.84378332	-1.08353547	0.01658603
Ν	-0.90302135	1.14054557	-0.11711298
Ν	1.42548809	0.21188218	0.05220102
Ν	-0.54210084	-1.35134564	-0.06376496
\mathbf{C}	1.09496663	2.77589438	0.06183500
Ν	0.94876715	3.63962648	1.06656999
N	1.84021599	3.38577992	-0.86005901
C	1.60675585	4.80907908	0.78083798
U	2.1/4811/4	4.64699473	-0.43524202
н	1.01110433 2.77804014	5.04198408 5.20765226	1.40407797
	2.11004014	0.43310091	-1.02434203
N	-3 78705234	-0.51187570	0.81004105
N	-3.67163939	-0.59187278	-1.32215895
C	-5.06510846	-0.72348894	0.35549105
\mathbf{C}	-4.99120250	-0.77382199	-0.99388195
Н	-5.90058952	-0.81768743	1.01905706
Η	-5.75047759	-0.92002755	-1.73511194
\mathbf{C}	1.85112158	-2.32779007	0.10692904
Ν	2.67120730	-2.78028257	-0.84075696
Ν	2.04230412	-3.09726918	1.17737605
C	3.38956866	-3.85197600	-0.36731995
C	2.99135855	-4.05001575	0.90871205
H	4.11105135	-4.36785544	-0.96805395
H C	3.29800212	-4.77324892	1.03707000
Н	-3.09164556	-0.37142514 0 30423557	-2.03238890
Н	-2.36352286	-1 37393258	-2.72388895
H	-3.88303748	-0.72110168	-3.37747195
$\overline{\mathbf{C}}$	-3.35659626	-0.38789194	2.19146004
Н	-2.66512174	-1.19483735	2.41466305
Н	-2.87705568	0.57812077	2.31827603
Н	-4.22763529	-0.45604841	2.83241205
С	1.29945523	-2.92727872	2.41398405
H	0.24030016	-3.04347609	2.19896306
H	1.62577478	-3.68414391	3.11758706
H C	1.30440282	-1.93927884	2.81497704
Ч	2.70797403	-2.22250504 1 27156833	-2.17038490 2 17817007
H	3.81125273	-2.05078227	-2.11615197
H	2.31627222	-2.90312238	-2.89190795
\mathbf{C}	2.30389760	2.73634964	-2.07435701
Н	3.01788513	1.96226121	-1.80618700
Н	1.45401033	2.29896714	-2.58750600
Н	2.76545804	3.48453835	-2.70828102
\mathbf{C}	0.13664799	3.37256197	2.24177600
H	-0.90350906	3.29328859	1.93719200
H	0.46678144	2.44386778	2.69550200
H	0.27124748	4.18826090	2.94256099
D H	2.98070019	0.37472023	0.30720301 1 10751002
H	3 61731003	0.10390686	-0 71400299
В	-1.95001264	2.32709720	-0.24208199
H	-2.68119776	2.13699862	-1.20356398
Н	-2.64253961	2.37774262	0.77521102
В	-1.19682670	-2.79653725	-0.04524694
Η	-1.79739980	-2.95953088	1.01755206
Н	-1.99186478	-2.90923879	-0.96732894
Н	-0.33225022	-3.64990577	-0.15984694
H	-1.36809701	3.38844085	-0.39458200
Н	3.23651288	1.52068910	0.64506400

Table S11: Gas Phase Ground State BP86/TZ2P Determined XYZ Coordinates (in Å) for the Mono-substituted Species.

$\mathbf{ImMe}_2 \ C_{2v}$			
С	0.000000	0.000000	-0.986088
\mathbf{C}	-0.680550	0.000000	1.217578
\mathbf{C}	0.680550	0.000000	1.217578
Η	-1.384266	0.000000	2.041305
Η	1.384266	0.000000	2.041305
Ν	-1.063891	0.000000	-0.120553
Ν	1.063891	0.000000	-0.120553
\mathbf{C}	-2.445208	0.000000	-0.574008
Η	-2.429119	0.000000	-1.666982
Η	-2.972823	-0.894452	-0.216760
Η	-2.972823	0.894452	-0.216760
\mathbf{C}	2.445208	0.000000	-0.574008
Η	2.972823	-0.894452	-0.216760
Η	2.429119	0.000000	-1.666982
Н	2.972823	0.894452	-0.216760

$ImMe_2CH_2 C_{2v}$			
С	-0.677678	0.000000	-1.547475
\mathbf{C}	0.677678	0.000000	-1.547475
Η	-1.378124	0.000000	-2.371113
Η	1.378124	0.000000	-2.371113
Ν	-1.102842	0.000000	-0.217853
Ν	1.102842	0.000000	-0.217853
\mathbf{C}	-2.462761	0.000000	0.258075
Η	-2.663490	0.892342	0.872381
Η	-3.144558	0.000000	-0.598602
Η	-2.663490	-0.892342	0.872381
\mathbf{C}	2.462761	0.000000	0.258075
Η	3.144558	0.000000	-0.598602
Н	2.663490	0.892342	0.872381
Η	2.663490	-0.892342	0.872381
\mathbf{C}	0.000000	0.000000	0.636611
\mathbf{C}	0.000000	0.000000	2.003407
Н	0.932546	0.000000	2.557697
Н	-0.932546	0.000000	2.557697
$Me_3PCH_2 C_s$			
-----------------	-----------	-----------	-----------
Р	0.087154	0.127845	0.000000
\mathbf{C}	-0.966605	-0.057479	-1.483377
Н	-1.435473	-1.050245	-1.520669
Н	-0.335643	0.068320	-2.374442
Н	-1.735494	0.724995	-1.487073
\mathbf{C}	1.001738	-1.500169	0.000000
Н	1.647432	-1.543766	-0.889416
Н	0.325922	-2.370108	0.000000
Н	1.647432	-1.543766	0.889416
\mathbf{C}	-0.966605	-0.057479	1.483377
Н	-1.735494	0.724995	1.487073
Н	-1.435473	-1.050245	1.520669
\mathbf{C}	0.843802	1.630599	0.000000
Н	1.319964	1.956026	0.927372
Н	1.319964	1.956026	-0.927372
Н	-0.335643	0.068320	2.374442

В	0.000000	0.000000	-0.742953
Ν	0.000000	0.000000	0.531206
$\mathbf{mMe}_2 \cdot \mathbf{BN} \ C_{2v}$			
В	0.000000	0.000000	-1.848388
Ν	0.000000	0.000000	-3.118818
\mathbf{C}	0.000000	0.000000	-0.340532
\mathbf{C}	0.000000	0.681922	1.808369
\mathbf{C}	0.000000	-0.681922	1.808369
Η	0.000000	1.384650	2.630678
Η	0.000000	-1.384650	2.630678
Ν	0.000000	1.088558	0.487312
Ν	0.000000	-1.088558	0.487312
\mathbf{C}	0.000000	2.466640	0.008955
Η	0.000000	2.435261	-1.087270
Η	-0.897210	2.987926	0.363232
Η	0.897210	2.987926	0.363232
\mathbf{C}	0.000000	-2.466640	0.008955
Η	-0.897210	-2.987926	0.363232
Η	0.000000	-2.435261	-1.087270
Η	0.897210	-2.987926	0.363232

$ImMe_2CH_2 \cdot BN \ C_1$			
В	1.912860	-1.348082	-0.259767
Ν	2.788159	-1.119008	-1.151961
\mathbf{C}	-0.892438	1.804575	-0.318303
\mathbf{C}	-1.930891	0.927551	-0.381962
Н	-0.839015	2.853032	-0.575255
Н	-2.955509	1.063460	-0.697854
Ν	0.205665	1.115464	0.163832
Ν	-1.453367	-0.294693	0.066026
\mathbf{C}	1.577276	1.628279	0.215237
Н	2.208204	0.950526	-0.406030
Н	1.570348	2.656201	-0.159059
Н	1.947012	1.615181	1.247185
\mathbf{C}	-2.227810	-1.531184	0.122574
Н	-3.252827	-1.308704	-0.186716
Н	-1.800903	-2.276332	-0.558910
Н	-2.243160	-1.930485	1.142811
\mathbf{C}	-0.137954	-0.177567	0.390768
\mathbf{C}	0.768126	-1.265607	0.828646
Н	0.195633	-2.195353	0.945535
Н	1.185953	-1.023127	1.820675

$Me_3PCH_2 \cdot BN C_s$			
В	1.955249	-0.668240	0.000000
Ν	2.749475	0.321947	0.000000
Р	-0.524976	-0.014926	0.000000
\mathbf{C}	-0.235112	0.986765	-1.480132
Н	-0.851434	1.895858	-1.443642
Н	-0.491052	0.404585	-2.376827
Н	0.841004	1.230067	-1.476532
\mathbf{C}	-2.290483	-0.503512	0.000000
Н	-2.506585	-1.105437	-0.894020
Н	-2.938430	0.384010	0.000000
Н	-2.506585	-1.105437	0.894020
\mathbf{C}	-0.235112	0.986765	1.480132
Н	-0.851434	1.895858	1.443642
Н	-0.491052	0.404585	2.376827
\mathbf{C}	0.589567	-1.441691	0.000000
Н	0.385810	-2.055250	0.893339
Н	0.385810	-2.055250	-0.893339
Н	0.841004	1.230067	1.476532

$\mathbf{B}_{3}\mathbf{N}_{3}$ (singlet) D_{3h}			
В	-0.543937	0.942126	0.000000
В	1.087874	0.000000	0.000000
В	-0.543937	-0.942126	0.000000
Ν	0.764899	1.324844	0.000000
Ν	0.764899	-1.324844	0.000000
Ν	-1.529798	0.000000	0.000000
$\frac{\operatorname{Im}\operatorname{Me}_2 \cdot \mathbf{B}_3 \operatorname{N}_3 \ C_1}{\operatorname{D}}$	0.000000	0.000 - 40	0.017001
В	2.892220	0.888542	0.017021
В	0.962475	-0.031202	0.000596
В	2.892782	-0.957399	-0.018066
N	1.608508	1.281412	0.024772
Ν	1.608101	-1.346404	-0.024369
Ν	3.897735	-0.034425	-0.000680
\mathbf{C}	-0.642224	-0.008542	0.000176
Ν	-1.504654	-1.064825	0.001029
Ν	-1.435821	1.102015	-0.003237
\mathbf{C}	-2.810586	-0.622043	-0.001229
\mathbf{C}	-1.132809	-2.483063	0.008364
\mathbf{C}	-2.766626	0.740224	-0.003445
\mathbf{C}	-0.984273	2.496318	-0.002841
Н	-3.650825	-1.303349	-0.001400
Н	-0.036421	-2.534213	-0.020278
Н	-1.518410	-2.950963	0.921788
Н	-1.570340	-2.972122	-0.869625
Н	-3.561962	1.473200	-0.006871
Н	-0.408135	2.702026	0.902497
Н	-0.326395	2.674587	-0.856021
Н	-1.874375	3.131677	-0.052012

$ImMe_2CH_2 \cdot B_3N_3 C_1$			
В	2.652787	-1.182279	1.144550
В	1.295568	-0.704573	-0.417526
В	3.124894	0.254606	0.078260
Ν	1.473485	-1.646867	0.693694
Ν	2.150130	0.413475	-0.835317
Ν	3.732112	-0.344413	1.145744
С	-0.128334	-0.858197	-1.253397
С	-1.088984	-0.012858	-0.546249
Н	0.003155	-0.513751	-2.284596
Ν	-1.854358	-0.373882	0.513875
Ν	-1.298638	1.312041	-0.747830
С	-2.557072	0.729014	0.973597
С	-1.831345	-1.706186	1.123666
С	-2.209701	1.782922	0.184760
С	-0.571082	2.114246	-1.735115
Н	-3.227894	0.669887	1.819054
Н	-0.781350	-2.018761	1.233385
Н	-2.308370	-1.641498	2.105727
Н	-2.384033	-2.419420	0.499090
Н	-2.519905	2.817952	0.211318
Н	-0.950793	1.910626	-2.744439
Н	-0.725319	3.170720	-1.498220
Н	0.498645	1.863166	-1.664980
Н	-0.455438	-1.903258	-1.247461

$Me_3PCH_2 \cdot B_3N_3 C_s$			
В	2.555023	-1.066334	0.000000
В	3.288014	0.629835	0.000000
В	1.161571	0.560121	0.000000
Ν	3.842854	-0.623209	0.000000
Ν	2.269940	1.501911	0.000000
Ν	1.215147	-0.921039	0.000000
\mathbf{C}	-0.340359	1.236981	0.000000
Р	-1.652955	0.022007	0.000000
Н	-0.464036	1.883086	-0.884506
\mathbf{C}	-3.297320	0.815126	0.000000
\mathbf{C}	-1.562985	-1.026458	-1.473237
\mathbf{C}	-1.562985	-1.026458	1.473237
Н	-4.090938	0.054726	0.000000
Н	-3.404527	1.446426	-0.892944
Н	-3.404527	1.446426	0.892944
Н	-1.654350	-0.403903	-2.373863
Н	-2.366864	-1.774777	-1.459472
Н	-0.571265	-1.502700	-1.443829
Н	-1.654350	-0.403903	2.373863
Н	-2.366864	-1.774777	1.459472
Н	-0.571265	-1.502700	1.443829
Н	-0.464036	1.883086	0.884506

Species	$\Delta E_{LA}^{(b)}$	$(\Delta E + ZPE)_{LA}^{(b)}$	$\Delta G^{\circ}{}_{LA}{}^{(b)}$
$ImMe_2 \cdot BN \cdot BH_3$	-45.7	-42.7	-35.2
$ImMe_2 \cdot BN \cdot WCO_5$	-59.0	-58.0	-46.6
$ImMe_2 \cdot BNBN \cdot BH_3$	-51.9	-49.1	-41.5
$ImMe_2 \cdot BNBN \cdot WCO_5$	-68.1	-67.1	-55.6
$ImMe_2 \cdot B_2N_2 \cdot BH_3$	-40.6	-36.8	-27.0
$ImMe_2 \cdot B_2N_2 \cdot WCO_5$	-51.3	-49.9	-38.1
$ImMe_2 \cdot B_3N_3 \cdot BH_3 \cdot ortho$	-34.8	-31.4	-21.3
$ImMe_2 \cdot B_3N_3 \cdot WCO_5 \cdot ortho$	-43.7	-42.8	-30.6
$ImMe_2 \cdot B_3N_3 \cdot BH_3 \cdot para$	-21.7	-18.9	-10.7
$ImMe_2 \cdot B_3N_3 \cdot WCO_5 \cdot para$	-35.3	-34.8	-26.2

Table S12: The M05-2X/cc-pVTZ Computed Complexation Energies^(a) (in kcal/mol) for the Attachment of Different $ImMe_2 \cdot (BN)_x$ Donors to the BH₃ and WCO₅ Acceptor Groups^(b)

^(a)See Table 2 for Definition of Each Term. ^(b)For the Reaction: $ImMe_2 \cdot (BN)_n + LA \rightarrow ImMe_2 \cdot (BN)_n \cdot LA$ (n = 1-3)

Figure S1: M05-2X/cc-pVTZ Optimized Structures of the Isolated Species in the Gas Phase.

Figure S2: M05-2X/cc-pVTZ Calculated AIM Results, i.e., ρ and H(r) (in Parenthesis), for All the Structures in This Study. Average Values of the ρ and H(r) Are Provided for Some of the Two and Three-base Substituted Complexes.

 C_6H_6

ImMe₂

$ImMe_2CH_2 \\$

$Me_3PCH_2 \\$

 $ImMe_2 \cdot BN$

ImMe₂CH₂·BN

Me₃PCH₂·BN

ImMe₂·BNBN

ImMe₂CH₂·BNBN

Me₃PCH₂·BNBN

 $ImMe_2{\cdot}B_2N_2$

$Me_3PCH_2{\cdot}B_2N_2$

 $(ImMe_2)_2 \cdot B_2N_2$

$(ImMe_2CH_2)_2{\cdot}B_2N_2$

$(Me_3PCH_2)_2 \cdot B_2N_2$

 $ImMe_2CH_2 \cdot B_3N_3$

 $Me_3PCH_2 \cdot B_3N_3$

$(ImMe_2)_2 \cdot B_3N_3$

$(ImMe_2CH_2)_2 \cdot B_3N_3$

$(Me_3PCH_2)_2 \cdot B_3N_3$

 $(ImMe_2)_3 \cdot B_3N_3$

(Me₃PCH₂)₃·B₃N₃

Figure S3: Highest Occupied (HOMO) and Lowest Unoccupied (LUMO) Molecular Orbitals of All the Studied Structures (Isovalue = 0.02) Computed at the M05-2X/cc-pVTZ Level of Theory. Energies (in eV) Are Also Given in Parentheses.

References

- (1) Martin, J. M. L. Mol. Phys. 2014, 112, 785–793.
- (2) Karton, A.; Martin, J. M. L. J. Chem. Phys. 2006, 125, 144313.
- (3) Martin, J. M. L.; Lee, T. J.; Scuseria, G. E.; Taylor, P. R. J. Chem. Phys. 1992, 97, 6549–6556.
- (4) Asmis, K. R.; Taylor, T. R.; Neumark, D. M. Chem. Phys. Lett. 1998, 295, 75 81.
- (5) Lorenz, M.; Agreiter, J.; Smith, A. M.; Bondybey, V. E. J. Chem. Phys. 1996, 104, 3143–3146.
- (6) Xu, H.; Pittman Jr., C. U.; Saebø, S. Struc. Chem. 2013, 24, 1383–1393.
- (7) Cui, W.; Wang, C.; Shao, J.; Zhu, X. Int. J. Quant. Chem. 2013, 113, 2251–2260.
- (8) Sutjianto, A.; Pandey, R.; Manuel Recio, J. Int. J. Quant. Chem. 1994, 52, 199–210.
- (9) Martin, J. M. L.; El-Yazal, J.; François, J.-P. Chem. Phys. Lett. 1996, 248, 95 101.
- (10) Martin, J. M. L.; François, J.-P.; Gijbels, R. Chem. Phys. Lett. 1992, 193, 243 250.
- (11) Martin, J. M. L.; El-Yazal, J.; François, J.-P.; Gijbels, R. Chem. Phys. Lett. 1995, 232, 289 294.