First principles study on stability and hydrogen adsorption

properties of Mg/Ti interface

J. H. Dai, R.W. Xie, Y. Y. Chen, and Y. Song*

School of Materials Science and Engineering, Harbin Institute of Technology at Weihai, 2 West Wenhua Road, Weihai 264209, China

Supporting Information: Calculation Details

Fig. S1 The detailed tests about the dependence of total energy of Mg/Ti interface on (a) the k-point grids and (b) energy cutoff for a (2×2) slab model.

It can be seen that variation of three points in Fig. S1(a) is within 0.0001% related to the absolute value of the total energy. Therefore the 7x7x1 k-points were used. In Fig. S1(b), after 350 eV, the dependence of total energy on the energy cutoff is weak, and the value of 400 eV was employed.

H positions	u	v	W
bridge	0.417	0.833	0.315
fcc	0.500	0.500	0.315
hcp	0.333	0.667	0.315
top	0.167	0.833	0.315
Mg-tet1	0.333	0.667	0.352
Mg-tet2	0.667	0.333	0.377
Mg-oct	0.500	0.500	0.364
Ti-tet1	0.333	0.667	0.260
Ti-tet2	0.667	0.333	0.280
Ti-oct	0.500	0.500	0.270

Table S1 The adsorption sites (in fraction coordinates) of hydrogen in the interface model.

^{*} Corresponding author's email address: sy@hitwh.edu.cn