Electronic Supplementary Information

Porous one-dimensional Mo₂C/amorphous carbon composites: high-efficient and durable electrocatalysts for hydrogen generation

Kai zhang, Chunyan Li, * Yang Zhao, Xianbo Yu and Yujin Chen*

Key Laboratory of In-Fiber Integrated Optics, Ministry of Education, College of Science, Harbin Engineering University, Harbin 150001, China, E-mail: chenyujin@hrbeu.edu.cn

Table	S1 .	Comparisons	of the	overoptentials	at	different	current	densities	in	HER
among	the	three Mo ₂ C-ba	ased car	talysts						

$J (mA cm^{-2})$ $\eta_i (mV)$	1	2	5	10	20	50	100
Mo ₂ C-1	63	91	117	134	150	172	190
Mo ₂ C-2	49	75	98	115	131	154	174
Mo ₂ C-3	30	46	103	146	173	201	221

Table S2. The comparisons of HER performances among different Mo-based catalysts

Catalysts	Tafel slope [mV dec ⁻¹]	<i>j</i> ₀ (μA cm ⁻ ²)	η ₁ (mV)	η ₁₀ (mV)	J ₂₀₀ (mA cm ⁻²)	Electrolyte	Refs
Li-MoS ₂	62	167		~118	200	0.5M	2f
						$\mathrm{H}_2\mathrm{SO}_4$	
MoP	54	34	~50	~130	>30	0.5M	3a
						H_2SO_4	
MoP-CA2	54	86	40	125	100	0.5M	3b
						H_2SO_4	
MoP thin	50	50		117	100	0.5M	3e
film on the					(180 mV)	H_2SO_4	
Ti foil							
Mo ₂ C/CNT-	58	62	~62	130		0.5M	5
GR						H_2SO_4	
Mo ₂ N/CNT-	72	39.4	~118	186	~15	0.5M	5
GR						H_2SO_4	
Bulk Mo ₂ C	56	1.3	~150	~210	~6.5	$1 \text{M} \text{H}_2 \text{SO}_4$	6
Mo ₂ C/CNT	55.2	14	64	~152		0.1M	7
						HClO ₄	
np-Mo ₂ C	53	_	~70	130	60	0.5M	9
NWs						H_2SO_4	
Mo ₂ C–RGO	57.3	_	~70	130		0.5M	10

						H_2SO_4	
β-Μο2C	120	17.29	~200		< 0.5	0.1M	11
						HClO ₄	
Mo ₂ C/GCSs	62.6	12.5	~120	200	10	0.5M	12
						H_2SO_4	
Mo ₂ C/NWs	55.8	_	~160	_	10.2	0.5M	13
						H_2SO_4	
Mo ₂ C-R	58	33	68		32	0.5M	14
						H_2SO_4	
Mo ₂ C-1	57.5	50.6	63	134	143.5	0.5M	This
						H_2SO_4	work
Mo ₂ C-2	57.6	102.3	49	115	216.8	0.5M	This
						H_2SO_4	work
M0 ₂ C-3	74	76.6	30	146	49.3	0.5M	This
						H_2SO_4	work

Note: η_1 and η_{10} denote overpotentials driving current densities of 1 and 10 mA cm⁻², respectively. J_{200} denote the current density at a overpotential of 200 mV.

Figure S1 XPS spectra of Mo_2C -based samples. (a) Mo 3d spectrum, and (b) C 1s spectrum.

Figure S2 Exchange current densities for all Mo_2C -based catalysts extracted from Tafel plots.

Figure S3 Nyquist plots of impedance spectroscopy analysis of a) Mo_2C-1 , b) Mo_2C-2 , and c) Mo_2C-3 , the inset in Figure S2 a) showing the corresponding equivalent circuit.

$\eta_i(mV)$	0	50	100	150	200	Ref.
$R_{\rm ct}(\Omega/{\rm cm}^2)$						
Mo ₂ C-1	254.8	137.8	17.2	2.2	1.0	This work
Mo ₂ C-2	163.3	96.5	19.9	2.9	1.1	This work
Mo ₂ C-3	83.0	66.3	18.7	2.1	1.0	This work
Mo ₂ C/CNT	_	_	21		_	7
Mo ₂ C-R	_	_			1.4	14
np-Mo ₂ C NWs				90		9

Table S3 Comparison of charge-transfer resistances among the three Mo_2C -based catalysts at different overpotentials.