Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

Electronic Supplementary Information

Twice as smart behavior of tert-butylthiacalix[4] arene derivative in glassy and crystalline form

K. V. Gataullina,^a M. A. Ziganshin,^a I. I. Stoikov,^a A. T. Gubaidullin^b and V. V. Gorbatchuk*^a

TG/DSC, DSC, TM-DSC and TG/DSC/MS curves for the studied calixarene samples in glassy and crystalline form and TG/DSC/MS curves for the products of their saturation with guest vapors and for metastable β_0 polymorph formed after guest release; visual changes of glassy calixarene in this process and at the heating; molar enthalpies of fusion and $\alpha \rightarrow \alpha'$ polymorphic transition

A.M. Butlerov Institute of Chemistry, Kazan Federal University,
Kremlevskaya 18, 420008 Kazan, Russia. E-mail: Valery.Gorbatchuk@kpfu.ru
b. A.E. Arbuzov Institute of Organic and Physical Chemistry, Akad. Arbuzova,
8, 420088 Kazan, Russia.

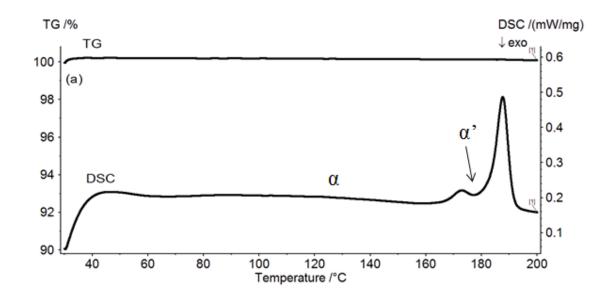


Figure 1S - TG/DSC curves for 1α sample.

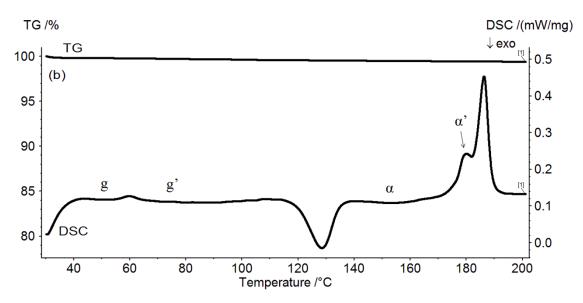


Figure 2S – TG/DSC curves for **1g** sample.

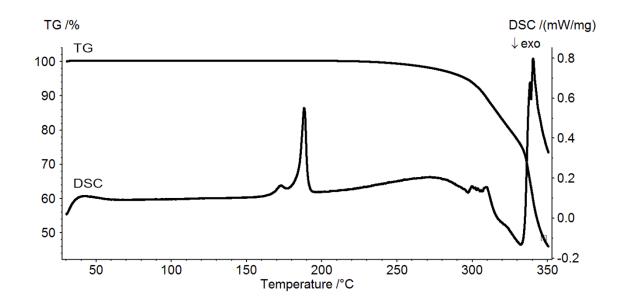


Figure 3S - TG/DSC curves for 1α sample.

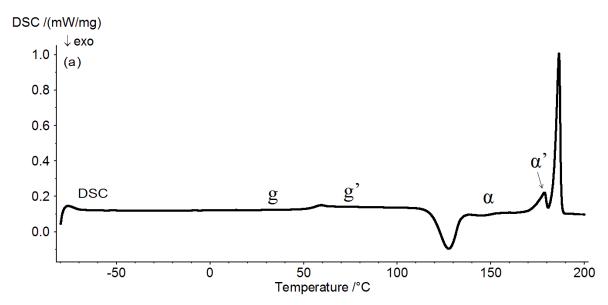


Figure 4S – DSC curves for **1g** sample. Heating rate is 5°C/min.

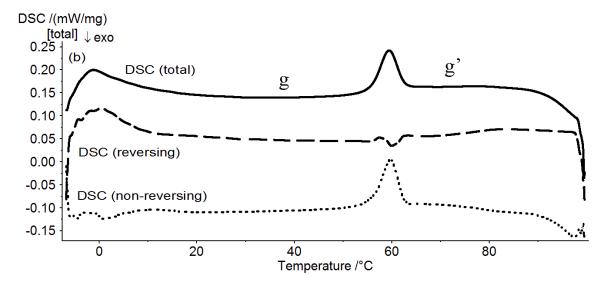


Figure 5S – TM-DSC curves for **1g** sample. Heating rate is 10°C/min.

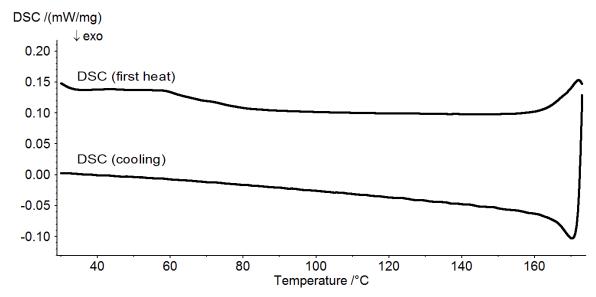


Figure 6S – DSC curves of **1g** heating to 173°C and cooling to 30°C with rate of 4 °C/min.

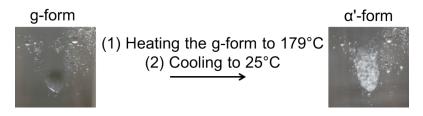


Figure 7S – Visual changes in **1g** sample at the heating to 179°C and cooling to RT of 25°C on the air.

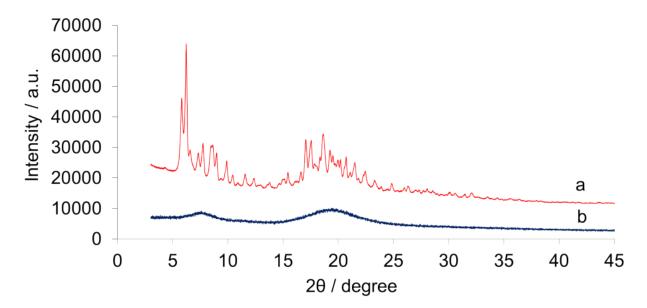


Figure 8S – XRPD data for 1α prepared by heating of (a) 1g to 150°C at the heating rate of 10°C/min and immediate cooling to RT on the air; (b) 1g heated to 80°C and cooled to RT.

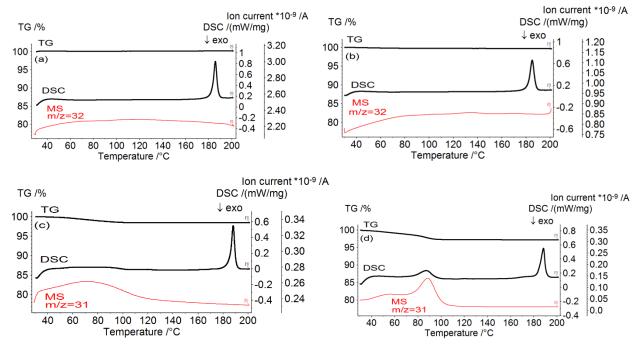


Figure 9S – TG/DSC/MS curves for products of solid calixarene **1** saturation with guest vapors at $P/P_0 = 1$, T = 25°C, in systems: (a) 1α + MeOH, (b) 1g + MeOH, (c) 1α + EtOH, (d) 1g + EtOH.

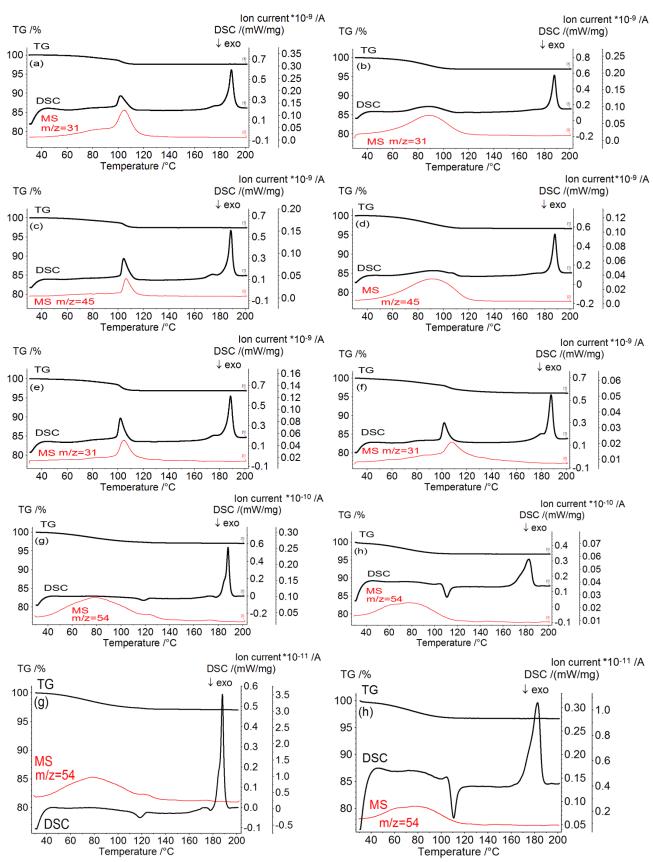


Figure 10S – TG/DSC/MS curves for products of solid calixarene **1** saturation with guest vapors at $P/P_0 = 1$, T = 25°C, in systems: (a) $1\alpha + \text{n-PrOH}$, (b) $1\mathbf{g} + \text{n-PrOH}$, (c) $1\alpha + \text{i-PrOH}$, (d) $1\mathbf{g} + \text{i-PrOH}$, (e) $1\alpha + \text{n-BuOH}$, (f) $1\mathbf{g} + \text{n-BuOH}$, (g) $1\alpha + \text{EtCN}$, (h) $1\mathbf{g} + \text{EtCN}$.

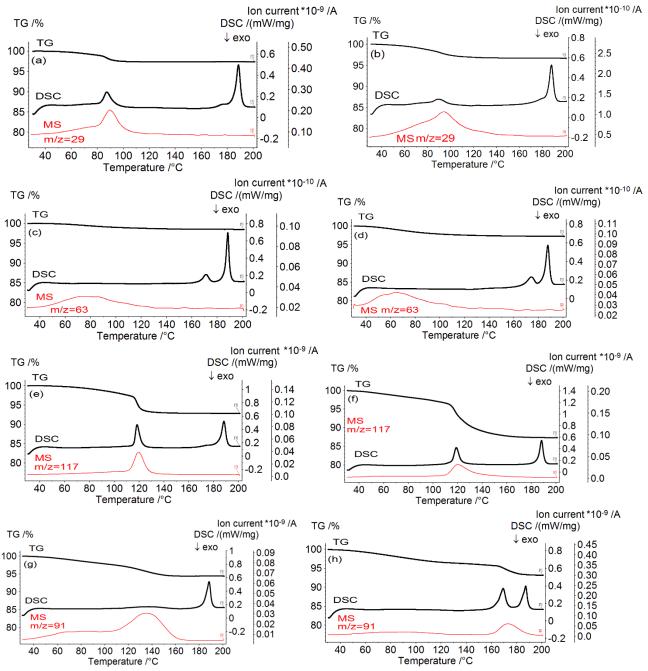


Figure 11S – TG/DSC/MS curves for products of solid calixarene **1** saturation with guest vapors at $P/P_0 = 1$, T = 25°C, in systems: (a) $\mathbf{1}\alpha + \text{PrCN}$, (b) $\mathbf{1}\mathbf{g} + \text{PrCN}$, (c) $\mathbf{1}\alpha + \text{C}_2\text{H}_4\text{Cl}_2$, (d) $\mathbf{1}\mathbf{g} + \text{C}_2\text{H}_4\text{Cl}_2$, (e) $\mathbf{1}\alpha + \text{CCl}_4$, (f) $\mathbf{1}\mathbf{g} + \text{CCl}_4$, (g) $\mathbf{1}\alpha + \text{C}_6\text{H}_5\text{Me}$, (h). $\mathbf{1}\mathbf{g} + \text{C}_6\text{H}_5\text{Me}$.

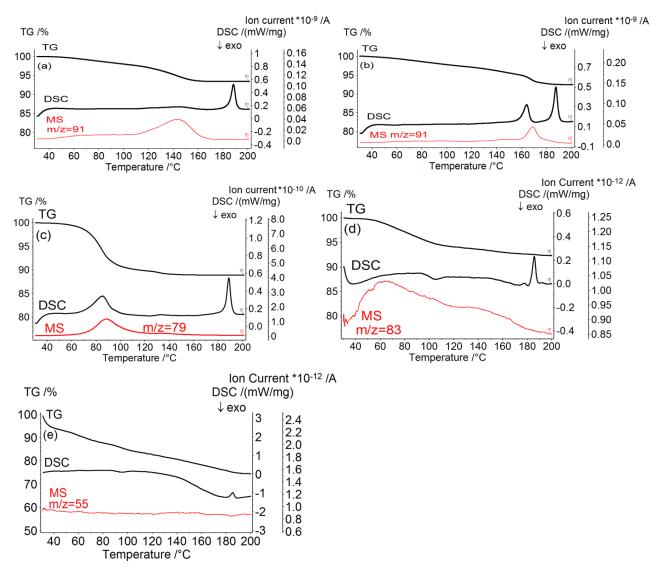


Figure 12S – TG/DSC/MS curves for products of solid calixarene **1** saturation with guest vapors at $P/P_0 = 1$, T = 25°C, in systems: (a) $1\alpha + C_6H_5Et$, (b) $1g + C_6H_5Et$, (c) $1\alpha + C_5H_5N$, (d) $1\alpha + CHCl_3$, (e) $1\alpha + HFP$.

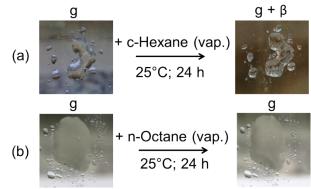


Figure 13S – Visual changes in 1g sample at the saturation with vapors of (a) cyclohexane, (b) n-octane.

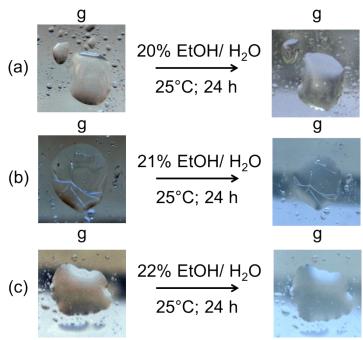


Figure 14S – Visual images of $\mathbf{1g}$ samples before and after saturation with vapors of binary aqueous mixture having ethanol contents (a) 20 vol. %, (b) 21 vol. %, (c) 22 vol. %; saturation time 24 h, T=25°C.

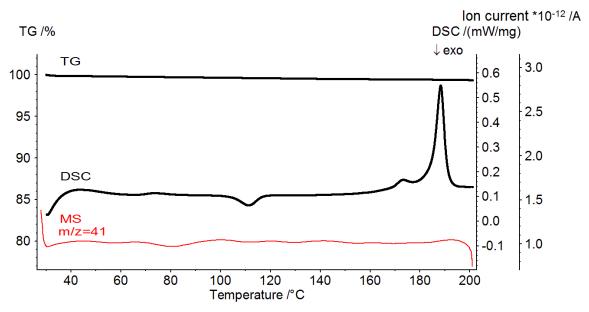


Figure 15S – TG/DSC/MS curves for a sample of β_0 phase prepared from clathrate formed by saturation of 1α with acetonitrile vapor.

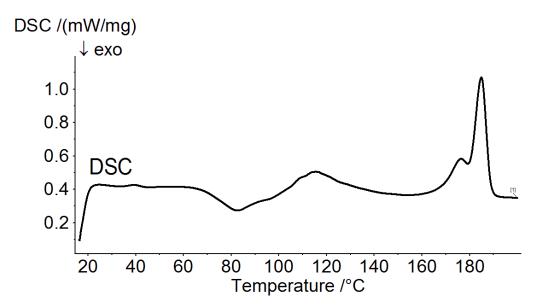


Figure 16S - DSC curve for compact 1g glass saturated with vapor of liquid aqueous ethanol (25 vol%) for 24 h.

Table 1S. Enthalpies of $\alpha \rightarrow \alpha'$ transition $\Delta H_{\alpha \rightarrow \alpha'}$, fusion $\Delta H_{\rm m}$, and sum of these two values $\Delta H_{\Sigma} = \Delta H_{\alpha \rightarrow \alpha'} + \Delta H_{\rm m}$ for products of 1α and 1g saturation with guest vapors

from TG/DSC/MS experiment.

II TG/DSC/WS	Host					
Guest	поя					
	1α			1g		
	$\Delta H_{\alpha \to \alpha}$,	ΔH_{m} ,	ΔH_{Σ} ,	$\Delta H_{\alpha \to \alpha'}$,	$\Delta H_{ m m},$	ΔH_{Σ} ,
	kJ/mol	kJ/mol	kJ/mol	kJ/mol	kJ/mol	kJ/mol
No guest ^a	6	46	52	14	31	45
H ₂ O	7.2 ^b	43.5	50.7	-	34.9	34.9
CH ₃ OH	-	57.0	57.0	-	52.2	52.2
C ₂ H ₅ OH	1.1	44.8	45.9	4.6	42.2	46.9
1-C ₃ H ₇ OH	5.0	42.3	47.3	3.0	41.5	44.5
2-C ₃ H ₇ OH	5.1 ^b	41.0	46.0	3.0	38.6	41.5
1-C ₄ H ₉ OH	6.4 ^b	43.8	50.3	9.2 ^b	37.1	46.3
CH ₃ CN	3.1 ^b	42.8	45.9	4.3	41.6	45.9
C ₂ H ₅ CN	3.2 ^b	44.7	47.9	-	35.0	35.0
C ₃ H ₇ CN	4.6	41.5	46.0	3.2	42.4	45.7
Acetone	4.6 ^b	43.8	48.3	3.8	40.1	43.9
Pyridine ^c	3.9	43.1	47.0	-	-	-
C ₂ H ₄ Cl ₂	12.7 ^b	40.9	53.6	15.7 ^b	38.2	53.9
CCl ₄	5.3	41.7	47.0	-	40.9	40.9
CHCl ₃ ^c	1.1	16.4	17.5	-	-	-
Benzene	3.4 ^b	41.3	44.7	-	43.9	43.9
Toluene	-	42.7	42.7	-	29.5	29.5
Ethylbenzene	-	41.2	41.2	2	32.2	34.2
Cyclohexane	7.6 ^b	44.5	52.1	4.8	41.8	46.6
<i>n</i> -Octane	6.4 ^b	44.5	50.9	4.4	39.3	43.8

^a data for initial 1α and 1g samples from TM-DSC experiment; ^b a separate peak of $\alpha \rightarrow \alpha$ ' transition is observed, in other cases $\Delta H_{\alpha \rightarrow \alpha}$ ' values are for shoulders of fusion peak where observed; ^c data for inclusion compounds from dried 1α solution in liquid guest formed in vapor sorption process. The values of ΔH_{Σ} are determined with the error of ± 1 kJ/mol.