New type of excitatory pulse coupling of chemical oscillators via inhibitor

Ivan S. Proskurkin^a and Vladimir K. Vanag^b

^{*a*} Centre for Nonlinear Chemistry, Chemical-Biological Institute, Immanuel Kant Baltic Federal University, A.Nevskogo str. 14A, Kaliningrad, 236041, Russia; E-mail: <u>megavolt007@mail.ru</u>

^b Centre for Nonlinear Chemistry, Chemical-Biological Institute, Immanuel Kant Baltic Federal University, A.Nevskogo str. 14A, Kaliningrad, 236041, Russia; E-mail: <u>vkvanag@gmail.com</u>

Electronic Supplementary Information (ESI)

ESI consists of: (1) two photographs of the setup used, (2) Table 1 for reactions and constants of the model: eqs. (1) - (4) that describe the mechanism of the Belousov-Zhabotinsky reaction, (3) figures that provide more details about the results of simulations.

(1) Two photographs of the setup the scheme of which is shown in Fig. 2.

Fig. S1. Teflon reactors, Pt-electrodes, magnetic stirrers, peristaltic pumps, reservoirs with reactants.

Fig. S2. Scheme of a LabVIEW program developed by us (at the screen of the PC), DAQ National Instruments.

Term $k_1(h)xy$:	$X + Y \rightarrow 2V$	$k_1(h) = k_1'h,$
Annihilation of activator X and inhibitor	$HBrO_2 + Br^- + H^+ \rightarrow 2HOBr$	$k_1' = 2 \times 10^6 \text{ M}^{-2} \text{s}^{-1}$
Y and production of BrMA (= V).	$2HOBr + MA \rightarrow BrMA + H_2O$	-
Term $k_2(h)y$:	$Y \rightarrow X + V$	$k_2(h) = k_2' h^2 A,$
Slow emergence of X and slow	$Br^{-} + BrO_{3}^{-} + 2H^{+} \rightarrow HBrO_{2} + HOBr$	$k_{2}' = 2 \text{ M}^{-3}\text{s}^{-1}$
production of BrMA.	$HOBr + MA \rightarrow BrMA + H_2O$	2
Term $k_3 x^2$:	$X + X \rightarrow V$	$k_3 = 3000 \text{ M}^{-1}\text{s}^{-1}$,
Disproportionation of X and production	$HBrO_2 + HBrO_2 \rightarrow BrO_3^- + HOBr + H^+$	
of BrMA	$HOBr + MA \rightarrow BrMA + H_2O$	
Term $k_4(h)x(c_0 - z)/(c_0 - z + c_{\min})$:	$X \rightarrow 2X + 2Z$	$k_4(h) = k_4' h A,$
Autocatalysis with the restriction term	$HBrO_2 + BrO_3 + H^+ \rightarrow 2BrO_2$	k₄′ = 42 M⁻²s⁻¹,
$(c_0 - z)/(c_0 - z + c_{min})$ that stops	$2BrO_2 + 2C \rightarrow HBrO_2 + 2Z$	C _{min} =
autocatalysis if c (= c_0 - z) is close to c_0 .		$(3k_rk_{10}c_0)^{1/2}/k_{red}$
		$k_{\rm r} = 2 \times 10^8 {\rm M}^{-1}{\rm s}^{-1}$,
		$k_{10} = k_{10}'[MA],$
		<i>k</i> ₁₀ ′ = 0.05 M ⁻¹ s ⁻¹ ,
		$k_{\rm red}$ = 5 $ imes$ 10 ⁶ M ⁻¹ s ⁻¹
Term k₀vz:	$V + Z \rightarrow Y$	<i>k</i> ₉ = 20 M ⁻¹ s ⁻¹
Production of Y from BrMA	BrMA + ferriin \rightarrow Br ⁻ + products	
Term $k_{10}z$:	$Z \rightarrow 0$	$k_{10} = k_{10}'[MA],$
Reduction of ferriin in reaction with MA	ferriin + MA \rightarrow ferroin + products	k ₁₀ ' = 0.05 M ⁻¹ s ⁻¹
Term $k_{13}v$:	$V \rightarrow 0$	$k_{13} = 0.004 \text{ s}^{-1}$
All reactions that lead to a consumption	$BrMA \rightarrow products$	
of BrMA	BrMA + ferriin \rightarrow products	

(2) Table 1 for the reactions and constants of model (1) - (4).

Z = ferriin, C = ferroin, A = BrO_3^- , $h = [H^+]$, X = HBrO₂, Y = Br⁻, V = BrMA, MA = malonic acid.

(3) Theoretical Figures

Fig. S3. Typical kinetics for equations (1) - (4) for the *i*-th oscillator without coupling:

$$\begin{aligned} &\mathbf{x}_{i}^{2} = -k_{1}(h)x_{i}y_{i} + k_{2}(h)y_{i} - 2k_{3}x_{i}^{2} + k_{4}(h)x_{i}(c_{0} - z_{i})/(c_{0} - z_{i} + c_{\min}) - k_{0}x_{i} \\ &\mathbf{x}_{i}^{2} = -k_{1}(h)x_{i}y_{i} - k_{2}(h)y_{i} + k_{9}v_{i}z_{i} - k_{0}(y_{i} - y_{i0}) \\ &\mathbf{x}_{i}^{2} = 2k_{4}(h)x_{i}(c_{0} - z_{i})/(c_{0} - z_{i} + c_{\min}) - k_{9}v_{i}z_{i} - k_{10}z_{i} \\ &\mathbf{x}_{i}^{2} = 2k_{1}(h)x_{i}y_{i} + k_{2}(h)y_{i} + k_{3}x_{i}^{2} - k_{9}v_{i}z_{i} - k_{1}v_{i} - k_{0}v_{i} \end{aligned}$$

at $h = [H^+] = 0.305$ M, $A = [BrO_3^-] = 0.25$ M, [MA] = 0.1 M, $c_0 = 10^{-3}$ M, $k_0 = 5 \times 10^{-4}$ s⁻¹, $y_0 = 0$; $c_0 = [ferroin] + [ferriin]$, MA = malonic acid; $x = [HBrO_2]$, $y = [Br^-]$, z = [ferriin], v = [BrMA].

Fig. S4. The dependence of $T^{(n+1)} - T^{(n)}$ on the numbering *n* of perturbation in case of PRC computer experiment (presented in Fig. 4b) at $\tau = 42$ s [region (*ii*) in Fig. 4b]. Parameters: A = 0.3 M, $h_1 = 0.5$ M, [MA] = 0.2 M, $c_0 = 1$ mM, $k_0 = 5 \times 10^{-4}$ s⁻¹, $k_B = 5 \times 10^{-5}$ s⁻¹, $y_s = 3 \times 10^{-2}$ M; $T_0 = 66$ s; $\Delta t = 5$ s.

Fig. S5. The dependence of $T^{(n+1)} - T^{(n)}$ on the numbering *n* of perturbation in case of PRC computer experiment (presented in Fig. 4b) at $\tau = 2$ s [region (*i*) in Fig. 4b]. All other parameters as in Fig. S4.

Fig. S6. The dependences of the periods T_1 and T_2 for two pulse coupled BZ oscillators on time in case of complex synchronization. Parameters: $h_1 = 0.3$ M ($T_1 = 177$ s), $h_2 = 0.31$ M ($T_2 = 167$ s), $T_2/T_1 = 0.943$, A = 0.25 M, [MA] = 0.1 M, $c_0 = 1$ mM, $k_0 = 5 \times 10^{-4}$ s⁻¹, $k_B = 7 \times 10^{-5}$ s⁻¹, $y_{s1} = y_{s2} = 5$ mM, $\Delta t = 5$ s, $\tau = 65$ s. It is seen that periods T_1 and T_2 (which is time intervals between neighboring spikes of the same oscillator) are different and change with time.