Electronic Supplementary Information for

Glucosamine condensation catalyzed by 1-ethyl-3methylimidazolium acetate: mechanistic insight from NMR spectroscopy

Lingyu Jia,^{*ab*} Christian Marcus Pedersen,^{*c*} Yan Qiao,^{*d*} Tiansheng Deng,^{*a*} Pingping Zuo,^{*d*} Wenzhi Ge,^{*ab*} Zhangfeng Qin,^{*d*} Xianglin Hou,*^{*a*} and Yingxiong Wang*^{*a*}

- ^a The Biorefinery Research and Engineering Center, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, People's Republic of China.
 E-mail: houxl@sxicc.ac.cn, wangyx@sxicc.ac.cn; Fax: +86 351 4041153; Tel: +86 351 4049501
- ^b Graduate University of Chinese Academy of Sciences, Beijing, People's Republic of China
- ^c Department of Chemistry, University of Copenhagen, Universitetsparken 5, DK-2100 Copenhagen Ø, Denmark
- ^d State Key Laboratory of Coal Conversion, Institute of Coal Chemistry, Chinese Academy of Sciences, Taiyuan, People's Republic of China

Corresponding Author

*e-mail: houxl@sxicc.ac.cn; wangyx@sxicc.ac.cn

Supporting Figures and Tables

Figure S1 The ¹H NMR spectra of pure **GlcNH**₂ in DMSO-d₆ solution.

Figure S2 The ${}^{13}C$ NMR spectra of pure GlcNH₂ in DMSO-d₆ solution.

Figure S3 The $^{1}H^{-1}H$ COSY spectrum of **GlcNH**₂ in DMSO-d₆ at room temperature.

Figure S4 The HSQC spectrum of GlcNH₂ in DMSO-d₆ at room temperature.

Figure S5 The HMBC spectrum of $GlcNH_2$ in DMSO-d₆ at room temperature.

Figure S6 The effect of molar ratios of $[C_2C_1Im][OAc]/GlcNH_2$ on the ¹HNMR spectra for GlcNH₂ in DMSO-d₆ solution.

Figure S7 A time progression in ¹H NMR spectra of GlcNH₂ in DMSO-d₆.

Figure S8 A time progression in ${}^{13}C$ NMR spectra of GlcNH₂ in DMSO-d₆.

Figure S9 An equilibrium mixture of anomers with 0.5 equivalent of $[C_2C_1Im][OAc]$.

Figure S10 The changes of β/α anomeric composition of GlcNH₂ in an enlarged format calculated according to the integral area of β -H1/ α -H2 in the ¹H NMR spectra (molar ratio of [C₂C₁Im][OAc]/GlcNH₂ = 0:1, 0.1:1, 0.2:1, 0.5:1, 0.6:1, 0.9:1, 1:1 from below to top).

Figure S11 NOESY spectrum of 5:2 (molar ratio) mixture of $[C_2C_1Im][OAc]$ -GlcNH₂ in DMSO-d₆. The mixing time employed was 500 ms.

entry	α-C1/Δδ	α-C2/Δδ	α-C3/Δδ	α-C4/Δδ	α-C5/Δδ	α-C6/Δδ
0:1 (δ ₀)	89.3	54.9	70.2	72.7	70.6	60.9
0.1:1 (δ ₁)	89.4/0.1	55.0/0.1	70.4/0.2	72.7/0	70.7/0.1	61.0/0.1
0.2:1 (δ ₂)	89.6/0.3	55.1/0.2	70.6/0.4	72.8/0.1	70.7/0.1	61.0/0.1
0.5:1 (δ ₃)	90.2/0.9	55.5/0.6	70.7/0.5	72.8/0.1	70.8/0.2	61.2/0.3
0.6:1 (δ ₄)	90.3/1.0	55.6/0.6	70.7/0.4	72.8/0.1	70.8/0.2	61.2/0.3
0.9:1 (δ ₅)	90.7/1.4	55.8/0.8	70.7/0.4	72.8/0.1	70.8/0.2	61.3/0.4
1:1 (δ ₆)	90.9/1.6	55.9/0.9	70.7/0.5	72.8/0.1	70.8/0.2	61.3/0.4
2:1 (δ ₇)	91.8/2.5	56.5/1.6	70.7/0.5	73.33/0.6	70.9/0.3	61.5/0.6
6:1 (δ ₈)	92.4/3.1	57.1/2.2	70.8/0.6	74.3/1.6	71.1/0.4	61.5/0.6

Table S1 Changes in ¹³C chemical shifts ($\Delta\delta$) for pyranose tautomers of GlcNH₂ (α and β -anomers) with different molar ratio of [C₂C₁Im][OAc] in DMSO-d₆ ionic liquid [C₂C₁Im][OAc] solutions.

entry	β-C1/Δδ	β-C2/Δδ	β-C3/Δδ	β-C4/Δδ	β-C5/Δδ	β-C6/Δδ
$0:1(\delta_0)$	93.5	57.9	70.6	77.5	72.7	60.9
0.1:1 (δ ₁)	93.9/0.4	58.0/0.1	70.6/0	77.6/0.1	73.2/0.5	61.1/0.2
0.2:1 (δ ₂)	94.3/0.8	58.1/0.2	70.7/0.1	77.5/0	73.5/0.8	61.1/0.2
0.5:1 (δ ₃)	95.5/2.0	58.4/0.5	71.4/0.8	77.5/0	74.6/1.9	61.3/0.4
0.6:1 (δ ₄)	95.6/2.1	58.4/0.5	71.5/0.9	77.5/0	74.7/2.0	61.3/0.4
0.9:1 (δ ₅)	96.1/2.6	58.5/0.6	71.9/1.3	77.5/0	75.0/2.3	61.4/0.5
1:1 (δ_6)	96.3/2.8	58.6/0.7	72.2/1.6	77.5/0	75.2/2.5	61.4/0.5
2:1 (δ ₇)	97.1/3.6	58.8/0.9	72.9/2.3	77.6/0.1	75.8/3.1	61.5/0.6
6:1 (δ ₈)	97.9/4.4	58.9/1.0	73.1/2.5	77.9/0.4	76.4/3.7	61.5/0.6

^a ¹³C Chemical Shifts (ppm) of GlcNH₂ and $\Delta\delta$ values (ppm) were obtained by comparing with the chemical shift of GlcNH₂ in DMSO-d₆ with TMS as internal standard.

NMR Chemical Shifts ($\Delta\delta$) of Each Carbon with Different Molar Ratio of GlcNH ₂ .										
	entry	$H_2/\Delta\delta$	$H_5/\Delta\delta$	$H_4/\Delta\delta$	${\rm H_7/\Delta\delta}$	$H_6/\Delta\delta$	$H_9/\Delta\delta$	$H_8/\Delta\delta$		
	0:1	9.87	7.85	7.76	4.22	3.88	1.58	1.41		
	0.1:1	9.74/-0.13	7.85/0	7.76/0	4.21/-0.01	3.87/-0.01	1.62/0.04	1.41/0		
	0.2:1	9.59/-0.28	7.84/-0.01	7.75/-0.01	4.22/0	3.87/-0.01	1.65/0.07	1.41/0		
	0.3:1	9.46/-0.41	7.83/-0.02	7.74/-0.02	4.21/-0.01	3.86/-0.02	1.68/0.1	1.42/0.1		
	0.5:1	9.37/-0.5	7.83/-0.02	7.74/-0.02	4.22/0	3.87/-0.01	1.73/0.15	1.42/0.1		

Table S2. ¹H Chemical Shifts for the ionic liquid $[C_2C_1Im][OAc]$ and Changes in ¹H

^a ¹H Chemical Shifts (ppm) of $[C_2C_1Im][OAc]$ were referenced to TMS as internal standard. ^b $\Delta\delta$ values (ppm) were obtained by comparing with the chemical shift of $[C_2C_1Im][OAc]$ in DMSO-d₆. ^c The chemical shifts and $\Delta\delta$ values (ppm) of H₅, H₄, H₇, H₈ were the average values.

Table S3. ¹³C Chemical Shifts for the ionic liquid [C₂C₁Im][OAc] and Changes in ¹³C

NMR Chemical Shifts (2	Δδ)	of Each Carbon	with Different	GlcNH ₂	Concentrations
------------------------	-----	----------------	----------------	--------------------	----------------

entry	$C_{10}/\Delta\delta$	$C_2/\Delta\delta$	$C_4/\Delta\delta$	$C_5/\Delta\delta$	$C_7/\Delta\delta$	$C_6/\Delta\delta$	$C_9/\Delta\delta$	$C_8/\Delta\delta$
0:1	173.5	137.7	123.9	122.3	44.4	35.9	26.4	15.6
0.1:1	173.8/0.3	137.5/-0.2	123.9/0	122.3/0	44.4/0	36.0/0.1	25.9/-0.5	15.6/0
0.2:1	173.9/0.4	137.3/-0.4	123.9/0	122.3/0	44.5/0.1	36.0/0.1	25.3/-1.1	15.6/0
0.3:1	174.1/0.6	137.1/-0.6	123.9/0	122.4/0.1	44.5/0.1	36.1/0.2	24.9/-1.5	15.6/0
0.5:1	174.2/0.7	136.9/-0.8	124.0/0.1	122.4/0.1	44.5/0.1	36.1/0.2	24.2/-2.2	15.6/0

^a ¹³C Chemical Shifts (ppm) of $[C_2C_1Im][OAc]$ and $\Delta\delta$ values (ppm) were obtained by comparing with the chemical shift of $[C_2C_1Im][OAc]$ in DMSO-d₆ with TMS as internal standard.

Figure S12 The D-glucosamine pentaacetate conversion in the presence of $[C_2C_1Im][OAc]$ at 80°C for 2 h. Reaction conditions: 97.5 mg D-glucosamine pentaacetate (0.25 mmol), 85.1 mg $[C_2C_1Im][OAc]$ (0.5 mmol), 2 ml DMSO

.

Figure S13 The direct conversion of N-acetyl-D-glucosamine in the presence of $[C_2C_1Im][OAc]$ at 80°C for 3 h. Reaction conditions: 20.1 mg N-acetyl-D-glucosamine (0.09 mmol), 10.1 mg $[C_2C_1Im][OAc]$ (0.06 mmol), 1 ml DMSO.

Figure S14 The blank experiment of GlcNH₂ conversion in the absence of $[C_2C_1Im][OAc]$ at 80 °C for 20 min as an example. Reaction conditions: 179.2 mg GlcNH₂, without $[C_2C_1Im][OAc]$, 2 ml DMSO at 80 °C for 20, 60, and 120 min, respectively.

Figure S15 The ¹H NMR spectrum of DOF and FZ.

Figure S17 The ¹H-¹H COSY spectrum of DOF and **FZ**.

Figure S18 The HSQC spectrum of DOF and FZ.

NMR data:

Fructosazine:

 δ_{H} (400.13 MHz; DMSO-d₆; Me₄Si) 8.6 (2H, s, pyrazine ring protons), 5.1 [2 H, d, C(1' and 1'')-H], 3.9-3.8 [2 H, m, C(2' and 2'')-H], 3.9-3.8 [2 H, m, C(3' and 3'')-H] and 3.9-3.5 [4 H, m, C(4' and 4'')-H].

 δ_{C} (100.6 MHz; DMSO-d₆; Me₄Si); 155.03 (C2 and C5), 141.85 (C3 and C6), 73.31 (C2' and C2''), 71.32 (C1' and C1''), 70.92 (C3' and C3''), 62.87 (C4' and C4'').

Deoxyfructosazine:

δ_H (400.13 MHz; DMSO-d₆; Me₄Si) 8.57 [1 H, d, pyrazine ring C(3)-H], 8.39 [1 H, d, pyrazine ring C(6)-H], 5.02 [1 H, d, C(1')-H], 3.10-2.81 [2 H, m, C(1'')-methylene H], 3.9-3.5-4.03 [1 H, m, C(2'')-H], 3.9-3.7 [1 H, m, C(2')-H], 3.9-3.7 [1 H, m, C(3'')-H], 3.7-3.6 [1 H, m, C(3'')-H], 3.9-3.5 [4 H, m, C(4' and 4'')-H].

 δ_{C} (100.6 MHz; DMSO-d₆; Me₄Si); 153.97 and 153.14 (C2 and C5), 142.13 and 144.04 (C3 and C6), 74.36 (C3"), 73.31 (C2'), 71.32 (C1'), 71.27 (C2"), 71.22 (C3') 62.39 (C4' and C4"), 37.47 (C1").

Figure S19 The effect of reaction temperature on the isolated yield of DOF and FZ was investigated at 60, 80, and 100 °C (from a to c). Reaction conditions: 179.2 mg GlcNH₂, 170.2 mg [C₂C₁Im][OAc] (molar ratio of GlcNH₂/[C₂C₁Im][OAc] = 1:1), 2 ml DMSO.

Figure S20 Qualitative identification of the DOF and FZ by using positive-ion ESI Mass Spectrum.

Mass spectrometry data:

FZ: ESI-MS m/z: 321.1455 [(M+ H)⁺, $C_{12}H_{21}N_2O_8$], Anal. Calcd for $C_{12}H_{20}N_2O_8$: 320.1220.

DOF: ESI-MS m/z: 305.1494 [(M+ H)⁺, $C_{12}H_{21}N_2O_7$], Anal. Calcd for $C_{12}H_{20}N_2O_7$: 304.1271.

Figure S21 Changes of solution color as the increasing of reaction time at different temperature from 60 to 100 $^{\circ}$ C (from left to right).