Supporting Information

(Total of 13 pages) for

Theoretical Study of the Dark Photochemistry of 1,3-Butadiene via the Chemiexcitation of Dewar Dioxetane

Pooria Farahani,^{*,†,‡} Marcus Lundberg,[†] Roland Lindh,^{†,¶} and Daniel Roca-Sanjuán^{*,‡}

[†]Department of Chemistry – Ångström, Uppsala University, P.O. Box 518, SE-751 20 Uppsala, Sweden [‡]Instituto de Ciencia Molecular, Universitat de València, P.O. Box 22085, ES-46071 València, Spain [¶]Uppsala Center for Computational Chemistry, Uppsala University, P.O. Box 518, SE-751 20 Uppsala, Sweden

E-mail: <u>Pooria.Farahani@kemi.uu.se</u>, <u>Daniel.Roca@uv.es</u>

March 18, 2015

* To whom correspondence should be addressed

[†]Uppsala

[‡]València

¶UC ₃

Table of contents

Table S1. Cartesian coordinates (in Å) of the optimized Dewar dioxetane structures atthe CASSCF/ANO-RCC-VDZP level of theory
Table S2. Energies (in kcal/mol) of the low-lying singlet and triplet states at the optimized geometries of Dewar dioxetane relative to the ground-state energy of the reactant (Reac)
Table S3. Zero-point vibrational energies (in kcal/mol) of the low-lying singlet and triplet states at the optimized geometries of Dewar dioxetane relative to the ground-state energy of the reactant (Reac)
Table S4. Gibbs free energies (in kcal/mol) of the low-lying singlet and triplet states at the optimized geometries of Dewar dioxetane relative to the ground-state energy of the reactant (Reac)
Table S5. Relative electronic, zero-point vibrational and Gibbs free energies (kcal/mol)of the main stationary structures of the thermal decomposition of the Dewardioxetane
Table S6. Spin-orbit interactions (cm ⁻¹) of the main transition states
Figure S1. CASPT2/ANO-RCC-VTZP//CASSCF/ANO-RCC-VDZP MEP computed on the S ₀ state from a geometry after the Min _{S1} /Min _{T1} (TS _{T1})S13

Table S1. Cartesian coordinates (in Å) of the optimized Dewar dioxetane structures at the CASSCF/ANO-RCC-VDZP level of theory.

<u>Reactant:</u>

Η	-0.10601967	-2.49925566	0.12950332
С	-0.10434255	1.44351792	0.00537897
С	1.20502232	0.77416577	0.22820401
С	1.23697894	-0.75668867	0.14037256
С	-0.09048461	-1.42532236	0.07338887
С	-1.20187852	-0.73289068	-0.06905159
С	-1.20529267	0.73441401	-0.13817978
Η	-0.12216081	2.51758128	-0.03610816
Η	2.01155072	1.25039747	-0.31147186
Η	1.93217316	-1.16800074	-0.57946433
Η	-2.14930221	-1.23701627	-0.13347696
Η	-2.14828159	1.22399125	-0.30271245
0	1.85411933	-0.83837654	1.47874714
0	1.56892116	0.71349319	1.66232626

<u>TS_{s0} :</u>

Η	-0.07937550	-2.48201790	0.30082462
С	-0.09824899	1.43417859	-0.02819354
С	1.18358633	0.78284286	0.38417202
С	1.25251950	-0.73748625	0.12042603
С	-0.07766082	-1.41620016	0.15747943
С	-1.19329834	-0.74308496	-0.02877777
С	-1.18620312	0.71400543	-0.21364168
Η	-0.10726866	2.50318812	-0.13586208
Η	2.04600349	1.26874111	-0.05119435
Η	1.76123583	-0.95410507	-0.81520867
Η	-2.14213719	-1.24799729	-0.04244322
Η	-2.10918290	1.19070122	-0.49148377
0	2.14527879	-1.16955776	1.16260612
0	1.28575459	0.85680206	1.82875289

<u>Min_{s1} :</u>

Η	-0.07908801	-2.49010474	0.31420129
С	-0.12525031	1.41840006	-0.01013810
С	1.13358683	0.78192408	0.50159753
С	1.22333821	-0.72134292	0.08372621
С	-0.09361950	-1.42850289	0.14648204

С	-1.21260020	-0.76353361	-0.05216965
С	-1.19842682	0.69101753	-0.25322102
Η	-0.14122993	2.48889897	-0.10120308
Η	2.01909464	1.28642189	0.13237468
Η	1.58601125	-0.74088582	-0.94474300
Η	-2.16182391	-1.26776671	-0.06004257
Η	-2.10782870	1.16507132	-0.57711730
0	2.24655714	-1.37223939	0.80920804
0	1.17729007	0.95629710	1.91274415

<u>Min_{T1} :</u>

Η	-0.07784424	-2.49011934	0.30709967
С	-0.12674920	1.41857568	-0.00654236
С	1.13589469	0.78325003	0.49913877
С	1.22451084	-0.72106554	0.08705271
С	-0.09314598	-1.42792045	0.14360530
С	-1.21248185	-0.76353367	-0.05358316
С	-1.19972477	0.69144903	-0.25010198
Η	-0.14300395	2.48915793	-0.09603173
Η	2.01570288	1.29098269	0.12041907
Η	1.59417010	-0.74730925	-0.93908519
Η	-2.16090918	-1.26917440	-0.06418966
Η	-2.10956300	1.16600715	-0.57199006
0	2.23868982	-1.38214558	0.81683529
0	1.18046461	0.96550061	1.90907255

<u>TS_{s1} :</u>

Η	-0.15053172	-2.54541652	0.41432172
С	-0.12961157	1.45658099	0.00759276
С	1.11748408	0.94170467	0.63203119
С	1.29799745	-0.98425229	-0.05261980
С	-0.07786071	-1.50817029	0.14092407
С	-1.17903031	-0.76888824	-0.02284651
С	-1.14890124	0.67412122	-0.28785555
Η	-0.18524994	2.51788608	-0.16489957
Η	2.04422171	1.35902287	0.26897848
Η	1.52450312	-0.58973213	-1.03814793
Η	-2.14775675	-1.22106866	0.09235904
Η	-2.03392490	1.11365270	-0.71388054
0	2.25857530	-1.45767851	0.63313015
0	1.07609622	1.01589299	1.99261172

<u>TS_{T1}:</u>

Η	-0.13119706	-2.45682873	0.54502297
С	-0.13598664	1.49473450	-0.04748257
С	1.12476827	1.06799778	0.65031673
С	1.24168741	-0.81019499	0.08500868
С	-0.09575233	-1.42334585	0.25070334
С	-1.18769732	-0.72307634	0.02686553
С	-1.15624179	0.70228058	-0.31227768
Η	-0.19899367	2.54260651	-0.28950824
Η	2.04521377	1.34932452	0.14650244
Η	1.53032602	-0.64320861	-0.94825926
Η	-2.15085914	-1.19378871	0.10832254
Η	-2.03904949	1.11664821	-0.76654271
0	2.23181633	-1.46028293	0.71549653
0	1.15138571	1.05365509	1.90789265

<u>Z,Z-2,4-Hexadienedial₅₀ (p):</u>

Η	0.09456516	-2.62671783	0.90398521
С	0.10266517	1.90190288	0.11791848
С	-0.19130982	2.43574759	1.46062655
С	0.51033687	-2.30544908	-1.17477305
С	0.21646858	-1.83713370	0.18371747
С	0.09051107	-0.55877394	0.58631663
С	0.22461316	0.61560044	-0.26156560
Η	0.22949991	2.66019496	-0.63557052
Η	-0.24925478	3.52322170	1.51537209
Η	0.64836664	-1.57076858	-1.96381192
Η	-0.12733038	-0.38077471	1.61994397
Η	0.44216320	0.45343030	-1.30092484
0	0.60267302	-3.47886731	-1.43883610
0	-0.36454775	1.78490832	2.45966259

<u>Z,Z-2,4-Hexadienedial_{s0} (t):</u>

Η	-0.3657560	-2.5512646	0.8370547
С	-0.0653022	1.6910302	-0.1352129
С	0.9352944	1.7867469	0.9466935
С	1.2433022	-1.6242598	-0.2576920
С	-0.1026301	-1.6396715	0.3304634
С	-0.9973253	-0.6485296	0.2505005
С	-0.8666550	0.6560130	-0.4242595
Η	-0.1882004	2.5955695	-0.7068158

Η	1.1738214	2.8034081	1.2620440
Η	1.5394303	-0.7455158	-0.8223392
Η	-1.9731277	-0.8218413	0.6757051
Η	-1.5866480	0.8154444	-1.2119138
0	1.9977534	-2.5574302	-0.1480572
0	1.4854629	0.8568217	1.4758902

<u>E,Z-2,4-Hexadienedial_{s0} :</u>

Η	-0.6249095	-2.7323779	-0.7409783
С	0.2731305	1.3425527	-0.0086558
С	0.6000130	2.6469245	0.6040388
С	1.2323954	-1.9002524	-0.0350879
С	-0.2078480	-1.8343860	-0.3204217
С	-1.0115100	-0.7975878	-0.0442510
С	-0.6280255	0.5053821	0.5181232
Η	0.7814011	1.1026979	-0.9267513
Η	1.2189199	3.3162994	0.0066321
Η	1.6862927	-1.0647968	0.4907927
Η	-2.0664612	-0.9201828	-0.2291715
Η	-1.1554540	0.8161954	1.4045313
0	1.9021936	-2.8541670	-0.3430886
0	0.2292830	2.9902198	1.6963491

E,Z-2,4-Hexadienedial₁₁ (ππ*):

-0.409675	-2.756115	0.147366
0.153060	1.460559	-0.208842
0.892748	2.054414	0.864128
1.315183	-1.548503	-0.161595
-0.107616	-1.730202	0.038744
-1.106048	-0.750108	0.102809
-1.034047	0.622680	0.003566
0.443547	1.712425	-1.214721
1.719496	2.706351	0.592120
1.706967	-0.544559	-0.281526
-2.098953	-1.136549	0.257266
-1.963824	1.159418	0.093827
2.077007	-2.490192	-0.203015
0.641576	1.856902	2.041934
	-0.409675 0.153060 0.892748 1.315183 -0.107616 -1.106048 -1.034047 0.443547 1.719496 1.706967 -2.098953 -1.963824 2.077007 0.641576	-0.409675-2.7561150.1530601.4605590.8927482.0544141.315183-1.548503-0.107616-1.730202-1.106048-0.750108-1.0340470.6226800.4435471.7124251.7194962.7063511.706967-0.544559-2.098953-1.136549-1.9638241.1594182.077007-2.4901920.6415761.856902

<u>Z,Z-2,4-Hexadienedial_{S1} $(n\pi *)$:</u>

		<u></u>	
Η	-0.291169	-2.611278	0.671193
С	-0.094513	1.637376	-0.045346
С	0.913608	1.678492	0.940541
С	1.277176	-1.545814	-0.348084
С	-0.069134	-1.659287	0.222310
С	-1.015126	-0.708968	0.188340
С	-0.926498	0.646000	-0.374835
Η	-0.195654	2.565311	-0.580926
Η	1.534892	2.532099	1.122421
Η	1.530677	-0.636781	-0.883748
Η	-1.986417	-0.969252	0.579013
Η	-1.674652	0.873768	-1.115825
0	2.100874	-2.448962	-0.254424
0	1.161944	0.650951	1.781067

<u>Z,Z-2,4-Hexadienedial_{T1} ³($n\pi *$):</u>

			•
Η	-0.28648188	-2.61110363	0.68367320
С	-0.09002660	1.63974487	-0.04552067
С	0.89720287	1.68784604	0.96100197
С	1.27131779	-1.56086283	-0.36821722
С	-0.06522602	-1.66270147	0.22682450
С	-1.00515011	-0.70628318	0.19967088
С	-0.91394627	0.64189175	-0.38072063
Η	-0.18197874	2.56358342	-0.58931295
Η	1.51123912	2.54767108	1.14418312
Η	1.52767506	-0.64886686	-0.89776253
Η	-1.97262635	-0.95741732	0.60598365
Η	-1.64980374	0.85823623	-1.13718922
0	2.08399791	-2.47749469	-0.30312804
0	1.13981496	0.68941160	1.80221092

	_	тя	Min	Min	тс	т	77-Heva (n) 7 7-Heva (t)	E 7-Hevo	E 7-Hova	7 7 Hava	7 7-Hova
	Reac	13 ₅₀	Iviiii Si	TVIIII T1	13 _{S1}	13 _{T1}) <i>L</i> , <i>L</i> -Hexa _{so} (l)	L,Z-HEXa _{S0}		<i>L</i> , <i>L</i> -11CXd _{S1}	
	CASSCF/ANO-RCC-VDZP											
S ₀	0.00	13.89	11.19	11.22	3.74	3.97	-47.89	-65.64	-68.65	-21.88	-45.95	-51.07
\mathbf{S}_{1}	79.55	19.04	14.33	14.40	33.32	32.26	31.92	26.64	23.11	19.95	4.82	-0.63
\mathbf{S}_{2}	130.02	21.54	15.16	15.19	49.83	47.04	90.82	29.00	23.70	30.50	42.67	72.60
$\mathbf{S}_{_{3}}$	156.02	25.14	17.13	17.22	54.90	51.68	91.46	93.20	82.59	49.91	74.99	92.05
T ₁	61.68	16.63	11.20	11.20	30.39	29.58	11.06	16.23	10.86	-22.21	2.62	-5.91
T_2	116.29	19.06	14.67	14.71	42.27	41.19	16.46	17.79	17.69	19.54	12.51	15.80
T ₃	123.23	21.64	14.79	14.85	48.16	45.47	47.50	25.95	18.55	31.58	35.82	31.95
T_4	175.98	26.25	17.92	18.02	53.75	50.45	76.41	66.20	23.66	49.13	37.07	75.59
				CAS	SPT2/ANO-RCC	C-VTZP//CAS	SCF/ANO-RCC-V	/DZP				
S ₀	0.00	25.21	21.46	21.51	-4.28	-4.53	-70.47	-62.34	-64.43	-16.04	-46.37	-49.74
\mathbf{S}_{1}	71.65	28.32	22.74	22.78	32.09	30.52	6.87	19.80	16.78	16.56	7.28	8.06
\mathbf{S}_{2}	124.31	31.26	23.72	23.78	48.08	45.03	56.50	28.82	18.15	26.19	33.18	77.49
$\mathbf{S}_{_{3}}$	154.17	36.16	28.30	28.42	59.64	55.77	49.37	78.22	70.55	54.07	69.48	100.15
T ₁	50.71	25.68	21.82	21.84	30.15	29.01	-1.34	15.63	11.62	-15.16	3.31	5.01
T_{2}	113.90	29.92	25.96	26.08	47.88	46.42	1.83	20.08	11.34	17.19	18.06	32.28
T ₃	116.59	31.83	25.88	25.89	47.87	45.27	33.14	30.43	12.29	28.84	28.10	36.00

Table S2. Energies (in kcal/mol) of the low-lying singlet and triplet states at the optimized geometries of Dewar dioxetane relative to the ground-state energy of the reactant (Reac).

Table S3. Zero-point vibrational energies (in kcal/mol) of the low-lying singlet and triplet states at the optimized geometries of Dewar dioxetane relative to the ground-state energy of the reactant (Reac).

	Reac	TS _{s0}	Min _{s1}	Min _{T1}	TS _{S1}	TS _{T1}	Z,Z-Hexa _{so} (p)	Z,Z-Hexa _{s0} (t)	E,Z-Hexa _{so}	E,Z-Hexa _{T1}	Z,Z-Hexa _{s1}	Z,Z-Hexa _{T1}
					CASS	SCF/ANO-RCC	C-VDZP					
S ₀	0.00	12.55	9.66	10.00	-0.46	-0.08	-49.98	-68.54	-71.65	-26.67	-49.34	-55.37
\mathbf{S}_{1}	79.55	17.70	12.80	13.18	29.13	28.20	29.82	23.74	20.11	15.15	1.42	-4.93
\mathbf{S}_{2}	130.02	20.19	13.64	13.97	45.63	42.98	88.72	26.10	20.70	25.71	39.27	68.30
$\mathbf{S}_{_{3}}$	156.02	23.80	15.60	16.00	50.70	47.62	89.36	90.30	79.59	45.12	71.59	87.75
T ₁	61.68	15.29	9.67	9.98	26.19	25.52	8.96	13.33	7.86	-27.01	-0.78	-10.21
T_2	116.29	17.71	13.14	13.49	38.07	37.13	14.36	14.90	14.69	14.74	9.11	11.50
T_{3}	123.23	20.30	13.27	13.63	43.96	41.42	45.40	23.05	15.55	26.79	32.42	27.65
T ₄	175.98	24.90	16.39	16.80	49.56	46.39	74.31	63.30	20.66	44.34	33.68	71.29

Table S4. Gibbs free energies (in kcal/mol) of the low-lying singlet and triplet states at the optimized geometries of Dewar dioxetane relative to the ground-state energy of the reactant (Reac).

	Reac	TS ₅₀	Min _{s1}	Min _{T1}	TS _{S1}	TS _{T1}	Z,Z-Hexa _{s0} (p)	Z,Z-Hexa _{s0} (t)	E,Z-Hexa _{s0}	E,Z-Hexa _{T1}	Z,Z-Hexa _{s1}	Z,Z-Hexa _{T1}
					CAS	SCF/ANO-RCC	C-VDZP					
S ₀	0.00	12.81	9.56	9.80	-0.89	-0.43	-52.22	-70.27	-73.78	-28.71	-50.48	-57.00
$\mathbf{S}_{_{1}}$	79.55	17.96	12.70	12.98	28.69	27.86	27.59	22.01	17.98	13.12	0.29	-6.56
\mathbf{S}_{2}	130.02	20.46	13.53	13.76	45.20	42.63	86.49	24.37	18.57	23.67	38.14	66.67
$\mathbf{S}_{_{3}}$	156.02	24.06	15.50	15.79	50.27	47.27	87.13	88.57	77.46	43.08	70.46	86.12
T ₁	61.68	15.55	9.57	9.78	25.76	25.17	6.73	11.60	5.73	-29.04	-1.91	-11.84
T_2	116.29	17.97	13.04	13.29	37.64	36.78	12.13	13.16	12.56	12.71	7.98	9.87
T_{3}	123.23	20.56	13.16	13.42	43.53	41.07	43.17	21.32	13.42	24.75	31.29	26.02
T_4	175.98	25.16	16.29	16.59	49.12	46.04	72.08	61.57	18.53	42.30	32.54	69.66

Table S5. Relative electronic, zero-point vibrational and Gibbs free energies (kcal/mol) of the main stationary structures of the thermal decomposition of the Dewar dioxetane.

	ZPVE	Gibbs
REACT	72.2	53.0
TS _{so}	70.8	51.9
Min _{s1}	70.9	51.6
Min _{T1}	70.6	51.4
TS _{S1}	68.0	48.4
TS _{T1}	68.1	48.6
Z,Z-2,4-Hexadienedial _{s0} (p)	70.1	48.7
Z,Z-2,4-Hexadienedial _{so} (t)	69.3	48.4
E,Z-2,4-Hexadienedial _{so}	69.2	47.9
E,Z-2,4-Hexadienedial _{T1}	67.4	46.2
Z,Z-2,4-Hexadienedial _{S1}	68.8	48.5
Z,Z-2,4-Hexadienedial _{T1}	67.9	47.1

State 1	State 2	$ \langle \Psi_{1} H_{SO} \Psi_{2}\rangle $ (cm ⁻¹)				
		TS _{s0}	TS _{S1}	TS _{T1}		
T ₁ (M _s =-1)	S ₀ (M _s =0)	17.142	2.600	40.538		
T ₁ (M _s =0)	S ₀ (M _s =0)	12.754	66.113	30.505		
T ₁ (M _s =1)	S ₀ (M _s =0)	17.142	2.600	40.538		
$T_{2}(M_{s}=-1)$	S ₀ (M _s =0)	13.891	30.781	5.024		
T ₂ (M _s =0)	S ₀ (M _s =0)	2.55	26.360	60.114		
T ₂ (M _s =1)	S ₀ (M _s =0)	13.891	30.781	5.024		
T ₁ (M _s =-1)	S ₁ (M _s =0)	9.083	>1.000	4.193		
T ₁ (M _s =0)	S ₁ (M _s =0)	45.312	3.506	3.492		
T ₁ (M _s =1)	S ₁ (M _s =0)	9.083	>1.000	4.193		
$T_{2}(M_{s}=-1)$	S ₁ (M _s =0)	20.775	3.448	4.173		
T ₂ (M _s =0)	S ₁ (M _s =0)	80.219	38.850	6.451		
T ₂ (M _s =1)	S ₁ (M _S =0)	20.775	3.448	4.173		
T ₁ (M _s =-1)	S ₂ (M _s =0)	11.874	4.263	>1.000		
T ₁ (M _s =0)	S ₂ (M _s =0)	3.613	3.228	9.620		
T ₁ (M _s =1)	S ₂ (M _s =0)	11.874	4.263	>1.000		
$T_{2}(M_{s}=-1)$	S ₂ (M _s =0)	21.333	18.886	1.006		
T ₂ (M _s =0)	S ₂ (M _s =0)	6.716	20.754	30.840		
T ₂ (M _s =1)	S ₂ (M _S = 0)	21.333	18.886	1.006		
$T_{2}(M_{s}=-1)$	$T_{1}(M_{s}=-1)$	71.9	42.347	12.731		
$T_{2}(M_{s}=0)$	$T_{1}(M_{s}=-1)$	21.552	1.896	4.548		
T ₂ (M _s =1)	$T_{1}(M_{s}=0)$	21.552	1.896	4.548		
$T_{2}(M_{s}=-1)$	$T_{1}(M_{s}=0)$	21.552	1.896	4.458		
T ₂ (M _s =0)	$T_{1}(M_{s}=1)$	21.552	1.896	4.458		
T ₂ (M _s =1)	T ₁ (M _s =1)	71.9	42.347	12.731		

Table S6. Spin-orbit interactions (cm⁻¹) of the main transition states.

Figure S1. CASPT2/ANO-RCC-VTZP//CASSCF/ANO-RCC-VDZP MEP computed on the S₀ state from a geometry after the Min_{S1}/Min_{T1} (TS_{T1}).

