Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

Supplemental Information for

Thermal and photochemical reactions of methanol on nanocrystalline anatase TiO₂ thin films

David A. Bennett¹, Matteo Cargnello^{2,#}, Thomas R. Gordon², Christopher B. Murray², and John M. Vohs¹

¹Department of Chemical and Biomolecular Engineering, ²Department of Chemistry, ³Department of Materials Science and Engineering University of Pennsylvania, Philadelphia, Pennsylvania 19104
[#]Present address: Department of Chemical Engineering, Stanford University, Stanford, California 94305

Additional XPS Results

XPS was used to characterize the TiO_2 thin film samples before and after the oxygen annealing treatment that was used for sample cleaning. Figures S1 (F(1s) spectra) and S2 (C(1s) spectra) show that the cleaning procedure was effective in removing both F and C from the surfaces of the TiO_2 nanocrystals.

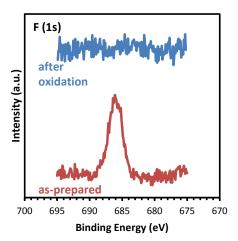


Figure S1. F(1s) XPS spectrum of as-prepared 18 nm A-TiO₂ thin film sample and following oxidation treatment.

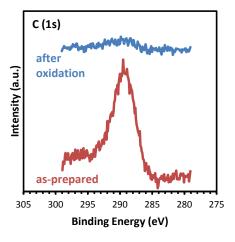


Figure S2. C(1s) XPS spectrum of as-prepared 18 nm A-TiO₂ thin film sample and following oxidation treatment.