Factors influencing the photocatalytic activity of rutile TiO_2 nanorods with

different aspect ratios for dye degradation and Cr(VI) photoreduction

Zewei Yang^a, Bing Wang^{a*}, Jin Zhang^b, Hao Cui^a, Yang Pan^a, Hao An^a, Jianping

Zhai^a

^{*a*} State Key Laboratory of Pollution Control and Resource Reuse, and School of the

Environment, Nanjing University, Nanjing 210046, PR China

^b School of Biochemical and Environmental Engineering, Nanjing Xiaozhuang

University, Nanjing 211171, PR China

*Corresponding author. Email: bingwang@nju.edu.cn;

Tel: +86 25 83592903;

Fax: +86 25 83592903.

Scheme S1 Formation of fluorescent product umbelliferone by the reaction of

coumarin probe molecules with OH radicals.

Fig. S1 TEM images (left) and corresponding histograms of particle width (red) and length (blue) (right) of (a) NR-4, (b) NR-5, (c) NR-6, (d) NR-7, and (e) NR-8

prepared without polymer.

Fig. S2 Photocatalytic evolution of the concentration (C/C_0) of (a) MB degradation

and (b) Cr(VI) reduction using samples NR-4-8 without polymer.

Fig. S3 Degradation of MB with recycled NR-4 and reduction of Cr(VI) with recycled

NR-7.

Fig. S4 Correlations between (a) k and r_{asp} ; (b) k and E_{fb} of samples NR-4–8 for

photocatalytic MB degradation and Cr(VI) reduction.

Fig. S5 Mott-Schottky plots obtained at different frequencies for the TiO₂ film electrodes prepared with samples NR-4–8 without polymer (TiO₂ film / Saturated Calomel / Pt in 0.1 M KCl) and their UV-Vis diffuse reflectance spectra (corresponding polts of $(\alpha hv)^2$ verse energy (*hv*) for samples NR4~8 inserted).

Fig. S6 TEM images (left) and corresponding histograms of particle width (red) and length (blue) (right) of samples NR-4 (a) without polymer (b) with 10 mg PVA (c) with 20 mg PVA (d) with 10 mg PVP (e) with 20 mg PVP.

Fig. S7 Photocatalytic evolution of the concentration (C/C_0) of MB degradation and Cr(VI) reduction using NR-4 samples synthesized without polymer and with different amounts of PVA / PVP.

Fig. S8 Mott-Schottky plots obtained at different frequencies for the TiO_2 film electrodes prepared with samples NR-4 with different amounts of PVA / PVP (TiO_2

film / Saturated Calomel / Pt in 0.1 M KCl).

Fig. S9 Correlations between (a) (c) k and r_{asp} ; (b) (d) k and E_{fb} of samples NR-4 without polymer and with different amounts of PVA or PVP for photocatalytic MB

degradation and Cr(VI) reduction.

Fig. S10 (a) Photocatalytic evolution of the concentration (C/C_0) and (b) rate constants (*k*) for the initial 30 min of photocatalytic Cr(VI) reduction using sample

NR-4 with PVA-10 and the Degussa P25 (S_{BET} =51.67 m² g⁻¹).