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Main manuscript abstract: Using density functional theory calculations, we study the response of
three representative graphene allotropes (two Pentaheptites and Octagraphene) as well as graphene,
to uniaxial strain up to their fracture limit. Those allotropes can be seen as distorted graphene
structures formed upon periodically arranged Stone - Walles transformations. We calculate their
mechanical properties (Young’s modulus, Poison’s ratio, speed of sound, ultimate tensile strength
and the corresponding strain), and we describe the pathways of their fracture. Finally, we study
strain as a factor for the conversion of graphene into those allotropes upon Stone - Walles transfor-
mations. For specific sets of Stone - Walles transformations leading to an allotrope, we determine
the strain directions and the corresponding minimum strain value, for which the allotrope is more
favorable energetically than graphene. We find that the minimum strain values which favor those
conversions are of the order of 9-13%. Moreover, we find that the energy barriers for the Stone -
Walles transformations, decrease dramatically under strain, however, they remain prohibitive for
structural transitions. Thus, strain alone can not provide a synthetic route to these allotropes, but
could be a part of composite procedures for this purpose.

Supplemental Information summary: We present all details of the fits to polynomial functions
of stress strain plots in order to estimate the Young’s moduli and Poisson’s ratios of the structures
under study in different directions described in the main manuscript. We also show that the relation
between σ/ε versus ε up to the UTS is not linear. Moreover, we use a simple model to estimate the
k value (k = Ev/2) for OcGr as a function of the strain direction for the two different sets of SWTs
of our study leading to OcGr.

A. Fitting details

As mentioned in the main manuscript, to estimate the Poisson’s ratio ν and Young’s modulus E at ambient strain
for each structure and strain direction of our study, we use the least square fitting method to fit the (ε, ε⊥) points to
a quadratic fitting function of the form

ε⊥ = ν1ε
2 − νε (S1)

and (ε, σ) points to a 3rd degree polynomial of the form

σ = Fε3 +Dε2 + Eε, (S2)

for ε values in the range [-0.1, 0.1].
The form of Eq. S1 seems to be adequate to describe quite accurately the relations between ε and ε⊥ for the

structures of our study, as shown in Fig. 2(b) of the main manuscript and Fig. S1(b). A sole exception is the OcGr
case for strain along ese direction, since as it is clearly shown in Fig. 2(b) of the main manuscript, that the relation
between ε and ν = −ε⊥/ε is by no means linear. In that particular case, we adopt a fitting function of the form

ε⊥ = ν2ε
3 + ν1ε

2 − νε, (S3)

which seems to be appropriate for that fit. The values of ν1 and ν, as well as the correlation coefficient R2 for the fits
are included presented in Tab. S1.
The fitting functions of the form of Eq. S2 are shown in Fig. S1(a). The F , D and E values for each fit are presented

in Table S1. Just for comparison we also fitted the (ε, σ) points to the same fitting function, as well as the (ε, σ/ε)
points to the function

σ/ε = Fε2 +Dε+ E (S4)
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FIG. S1: Fits to estimate (a) Young’s modulus E and (b) Poisson’s ratio ν. Lines present the fitting functions according to
Eqs. S1 and S2 for the strain range [-0.1, 0.1], except in (b) for the OcGr strained along ese direction, where Eq. S3 has been
used for the fit, for the same range of ε. In (c) we show σ/ε as a function of strain ε. If σ = Eε+Dε2, then the curves in (c)
should be straight lines. The curves in (c) correspond to fittings according to Eq. S4.

Structure direction ν1 ν R2 F (GPa) D (GPa) E (GPa) R2

Graphene ea 0.586998 0.177222 0.9996 -1834.400 -2180.762 1024.126 0.999987

ez 0.302497 0.173224 0.9994 1351.574 -2537.734 1020.176 0.999986

PeHe-A ea1 0.552949 0.252569 0.9994 -2203.236 -1270.180 824.913 0.99998

ez1 0.598259 0.263706 0.9996 -1835.280 -1652.989 859.660 0.999987

ez2 0.734046 0.255031 0.998 -2956.128 -1646.310 864.900 0.99994

PeHe-B ea1 0.605278 0.210213 0.9996 -791.424 -1710.944 882.192 0.999997

ez1 0.388375 0.228903 0.9995 -4062.802 -2123.779 937.140 0.999994

ea2 0.649711 0.249098 0.99993 -3086.814 -1662.229 897.075 0.999996

OcGr esd 0.574898 0.172129 0.99994 -1362.764 -1408.787 865.533 0.999998

ese 0.267039 0.538316 0.9997 -573.363 60.915 460.562 0.99996

TABLE S1: Fitted parameters for the estimation of Poisson’s ratios and Young’s moduli, for −0.1 ≤ ε ≤ 0.1, according
to Eqs. S1 and S2. Especially for OcGr strained along ese direction, a more appropriate fitting function, namely ε⊥ =
2.720500ε3 + 0.276210ε2 − 0.558299ε, (R2 = 0.99998) was adopted for Poisson’s ratio estimation. The strike-through lines
denote that the particular fit was not used to evaluate the Poisson’s ratio.

for ε > 0 values up to the strain corresponding to the ultimate tensile stress (UTS) for each case. Obviously, for
the fitting of Eq. S4, the (ε σ)=(0,0) point was not included. The F , D and E values of those fits, as well as the
corresponding correlation coefficient R2 are presented in Tables S2 and S3.
It is worth noting that both Eqs. S2 and S1 (and Eq. S3 for OcGr strained along ese direction) are quite accurate

in describing the σ and ε⊥ behavior versus ε, even for strain values in the range 0.1 > ε > 0.2, which have not been
taken in account for the fit and typically do not exceed the UTS limit. This is clearly shown in Fig. S1.
As we see, the obtained values for the Young moduli are not very sensitive on the details of fit performed. Thus,
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Structure direction F (GPa) D (GPa) E (GPa) R2 ε range

Graphene ea -1223.041 -2346.303 1034.012 0.999995 0 ≤ ε ≤ 0.175

ez 1533.663 -2690.550 1032.681 0.999996 0 ≤ ε ≤ 0.225

PeHe-A ea1 -455.795 -1910.023 866.091 0.99991 0 ≤ ε ≤ 0.275

ez1 -1613.250 -1836.176 871.661 0.99998 0 ≤ ε ≤ 0.200

ez2 -3871.357 -1583.781 869.975 0.99998 0 ≤ ε ≤ 0.175

PeHe-B ea1 -1769.632 -1463.420 869.165 0.999988 0 ≤ ε ≤ 0.200

ez1 -6061.944 -1742.350 923.392 0.99995 0 ≤ ε ≤ 0.150

ea2 658.994 -2552.033 942.539 0.99994 0 ≤ ε ≤ 0.225

OcGr esd -4034.183 -836.612 838.792 0.99997 0 ≤ ε ≤ 0.200

ese -3367.557 294.025 461.021 0.999987 0 ≤ ε ≤ 0.250

TABLE S2: Fitting stress - strain curve parameters using Eq. S2 for ε in the range shown in the last column.

Structure direction F (GPa) D (GPa) E (GPa) R2 ε range

Graphene ea -1880.786 -2192.014 1026.142 0.99975 0 < ε ≤ 0.175

ez 1192.860 -2589.717 1026.230 0.99983 0 < ε ≤ 0.225

PeHe-A ea1 -2957.127 -1148.711 815.756 0.997 0 < ε ≤ 0.275

ez1 -2898.357 -1489.601 851.206 0.9992 0 < ε ≤ 0.200

ez2 -4348.858 -1473.603 864.511 0.9992 0 < ε ≤ 0.175

PeHe-B ea1 -764.576 -1724.826 883.997 0.9995 0 < ε ≤ 0.200

ez1 -4611.246 -2041.640 937.008 0.9991 0 < ε ≤ 0.150

ea2 -1257.691 -1977.044 904.855 0.9985 0 < ε ≤ 0.225

OcGr esd -2521.152 -1242.989 862.672 0.9987 0 < ε ≤ 0.200

ese -3270.161 261.828 463.353 0.9991 0 < ε ≤ 0.250

TABLE S3: Fitting stress - strain curve parameters using Eq. S4 for ε in the range shown in the last column.

the error of our fitting procedure, estimated as the range of the obtained values for different fits, is less than 2% and
only in in two cases, PeHe-A in ea1, and PeHe-B in ea2 it rises to 6% and 5%, respectively.
On the contrary, the obtained values of D and, especially, F are very sensitive on the fitting procedure. However,

the values of Tables S2 and S3 are expected to be relatively more reasonable since the non-linear terms become more
important for large strain. Thus, with an expected error that can be of the order of 10-40%, we can only give rough
estimates of D as the average of the values in Tables S2 and S3. For graphene, we obtain D ∼ −2.3 × 103 GPa,
∼ −2.6 × 103 GPa, for ea, ez, respectively. For PeHe-A, we obtain D ∼ −1.5 × 103 GPa, ∼ −1.7 × 103 GPa, and
∼ −1.5× 103 GPa for the directions ea1, ez1, ez2, respectively. For PeHe-B, D ∼ −1.6× 103 GPa, ∼ −1.9× 103 GPa,
∼ −2.3×103 GPa, for ea1, ez1, ea2, respectively. Finally, for OcGr, we get D ∼ −1.0×103 GPa, and ∼ 0.28×103 GPa
for the esd and ese directions.

B. k for Octagraphene

In order to estimate the strain directions that favours the conversion of graphene, PeHe-A and PeHe-B to OcGr we
need to know the parameter k = kO = Ev/2 of OcGr. kO can not be assumed independent on the strain direction
unlike PeHe-A and PeHe-B, since OcGr is highly anisotropic in terms of Young’s modulus E. Therefore, kO depends on
the strain direction defined by the strain angle φ. Moreover, since the final OcGr structure has different orientations,

which depend on the conversion pathways, kO(φ) should be different for the conversion paths G
A
→ O and G

B
→ O.

Due to symmetry reasons arising from the square symmetry of the OcGr lattice, kO(φ) = kO(π/2−φ) = kO(−φ) =
kO(π − φ) = kO(π/2 + φ). Consequently, we only need to know the dependence of kO for 0 ≤ φ ≤ π/4. Just
for convenience we assume that kO(φ) = (kO(π/4) − kO(0)) tanφ + kO(0), for φ ∈ [0, π/4], which is an almost
linear relation between kO and φ. Due to the relation kO(φ) = kO(π/2 − φ), for φ ∈ [0, π/4], kO(π/2 − φ) =
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(kO(π/4)− kO(0)) tanφ+ kO(0). For θ = π/2− φ, we find

kO(θ) = (kO(π/4)− kO(0)) tan(π/2− θ) + kO(0)

= (kO(π/4)− kO(0)) cot(θ) + kO(0), (S5)

where π/4 ≤ θ ≤ π/2. The above relations in combination with the relation kO(φ) = kO(−φ) for negative angles,
yield

kO(φ) =

{

(kO(π/4)− kO(0)) tan |φ|+ kO(0), for |φ| ≤ π/4

(kO(π/4)− kO(0)) cot |φ|+ kO(0), for π/4 ≤ |φ| ≤ π/2.
(S6)

For the G
A
→ O conversion path, kO(φ = 0) = kO(ese), kO(φ = π/4) = kO(esd), where kO(ese) and kO(esd) are

the k values of OcGr for the strain directions ese and esd, respectively. For a strain direction defined in fractional
coordinates as (n,m), tanφ = aO,y/aO,x = m/(2n). Thus,

kO(n,m) =

{

(kO(esd)− kO(ese))|m/(2n)|+ kO(ese), for |m| ≤ |2n|

(kO(esd)− kO(ese))|2n/m|+ kO(ese), for |m| ≥ |2n|.
(S7)

In turn, for the G
B
→ O conversion path, kO(φ = 0) = kO(esd), kO(φ = π/4) = kO(ese) and tanφ = aO,y/aO,x =

m/n. Thus,

kO(n,m) =

{

(kO(ese)− kO(esd))|m/n|+ kO(esd), for |m| ≤ |n|

(kO(ese)− kO(esd))|n/m|+ kO(esd), for |m| ≥ |n|.
(S8)

The values of kO(ese) and kO(esd) are kO(ese) ≈ 14.2 eV and kO(esd) ≈ 26.7 eV. In Fig. S2 we show kO for OcGr

as a function of the angle φ for both G
A
→ O and G

B
→ O conversion paths.
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FIG. S2: kO for OcGr as a function of the strain angle φ for G
A
→ O and G

B
→ O paths.


