Supplementary Information

Harvesting of Light Energy by Iridium(III) Complexes on a Clay Surface

Kenji Tamura,^a Akihiko Yamagishi,^b Takafumi Kitazawa,^{b,c} and Hisako Sato,^d*

^a National Institute of Materials Science, Tsukuba 305-0044, Japan

^b Department of Chemistry, Toho University, Funabashi, Chiba 274-851, Japan

^c Research Center For Materials with Integrated Properties, Toho University, Funabashi, Chiba 274-851, Japan

^d Department of Chemistry, Graduate School of Science and Engineering, Ehime University, Matsuyama 790-8577, Japan, <u>sato.hisako.my@ehime-u.ac.jp</u>

Contnets

- 1. ¹H NMR, ¹³C NMR and mass spectra
- 2. UV-spectra
- 3. Chromatogram for optical resolution
- 4. Stationary emission spectra
- 5. Dynamic emission properties
- 6. Calculation of spectral overlap integral (J) and Förster radius (R₀)
- 7. XRD patterns of ion-exchange adducts

1. ¹H NMR and mass spectra

[Ir(dfppy)2(C1-bpy)]ClO4

¹H NMR (chloroform-*d*, 400MHz, 25 °C): δ 9.59 (s, 2H), 8.33 (d, *J* = 8.0 Hz, 2H), 7.84 (t, *J* = 7.2 Hz, 2H), 7.73 (d, *J* = 5.6 Hz, 2H), 7.52 (d, *J* = 4.2 Hz, 2H), 7.25 (d, *J* = 5.6 Hz, 2H), 7.10 (dd, *J* = 6.0, 6.0 Hz, 2H), 6.58 (t, *J* = 9.8 Hz, 2H), 5.71(d, *J* = 6.0 Hz, 2H), 3.00 (dd, J = 6.6, 7.0 Hz, 6H); MS (m/z; FAB): 756.79 (calculated for [Ir(dfppy)₂(C₁-bpy)]⁺; C₃₄H₂₄F₄IrN₄), 757 (experimentally obtained).

[Ir(piq)₂(C₁-bpy)]ClO₄

¹H NMR (chloroform-*d*, 400 MHz, 25 °C): δ 8.97 (t, J = 5.53Hz, 2H), 8.70 (s, 2H), 8.28 (d, J = 8.00 Hz, 2H), 7.93 (d, J = 4.33 Hz, 2H), 7.79 (t, J = 4.40 Hz, 4H), 7.55 (d, J = 5.56 Hz, 2H), 7.44 (d, J = 6.87 Hz, 4H), 7.13 (m, J = 6.00 Hz, 4H), 6.93 (t, J = 8.44Hz, 2H), 6.32 (d, J = 6.71 Hz, 2H), 2.65 (s, 7.99 Hz, 6H); MS (m/z; FAB): 784.9 (calculated for [Ir(piq)₂(C₁-bpy)]⁺; C₄₂H₃₂IrN₄) 785 (experimentally obtained).

[Ir(dfppy)₂(C₁₂-bpy)]ClO₄

¹H NMR (chloroform-*d*, 400 MHz, 25 °C): δ 9.45 (s, 2H), 8.32 (d, J = 8.8 Hz, 2H), 7.83 (dd, J = 6.0, 6.0 Hz, 2H), 7.73 (d, J = 6.0 Hz, 2H), 7.54 (d, J = 5.7 Hz, 2H), 7.25 (d, J = 5.7 Hz, 2H), 7.11 (dd, J = 6.0, 6.0 Hz, 2H), 6.57 (ddd, J = 9.3, 9.3, 2.5 Hz, 2H), 5.69 (dd, J = 6.0, 2.0 Hz, 2H), 2.97 (t, J = 7.7 Hz, 4H), 1,71 (tt, J = 7.7, 7.7 Hz, 4H), 1.42-1.20 (overlapped, 36H), 0.86 (t, J = 6.8 Hz, 6H); MS (m/z; FAB): 1068.1 (calculated for [Ir(ppy)₂(C₁₂-bpy)]⁺; C₅₆H₆₈ F₄IrN₄), 1066 (experimentally obtained).

[Ir(piq)2(C12-bpy)]ClO4

¹H NMR (chloroform-*d*, 400 MHz, 25 °C): δ 8.91 (t, J = 5.43Hz, 2H), 8.72 (s, 2H), 8.25 (d, J = 7.99 Hz, 2H), 7.94 (t, J = 4.33 Hz, 2H), 7.79 (t, J = 4.39 Hz, 4H), 7.55 (t, J = 5.61 Hz, 2H), 7.44 (dd, J = 6.47 Hz, 4H), 7.15 (m, J = 5.92 Hz, 4H), 6.87 (t, J = 7.44Hz, 2H), 6.26 (d, J = 6.71 Hz, 2H), 2.91 (t, J = 7.99 Hz, 4H), 1.80(m, 4H),1.25 (s, 36H), 0.87 (t, J = 6.89 Hz, 6H) ; MS (m/z; FAB): 1096.7 (calculated for [Ir(piq)₂(C₁₂-bpy)]⁺; C₆₄H₇₆IrN₄) 1094 (experimentally obtained).

[Ir(dfppy)2(C19-bpy)]ClO4

¹H NMR (chloroform-*d*, 400 MHz, 25 °C): δ 9.40 (s, 2H), 8.28 (d, J = 8.8 Hz, 2H), 7.80 (dd, J = 6.0, 6.0 Hz, 2H), 7.70 (d, J = 6.0 Hz, 2H), 7.50 (d, J = 5.7 Hz, 2H), 7.21 (d, J = 5.7 Hz, 2H), 7.07 (dd, J = 6.0, 6.0 Hz, 2H), 6.53 (ddd, J = 9.3, 9.3, 2.5 Hz, 2H), 5.66 (dd, J = 6.0, 2.0 Hz, 2H), 2.99 (t, J = 7.7 Hz, 4H), 1.71 (tt, J = 7.7, 7.7 Hz, 4H), 1.42-1.20 (overlapped, 64H), 0.86 (t, J = 6.8 Hz, 6H); MS (m/z; FAB): 1261.7 (calculated for [Ir(dfppy)₂(C19-bpy)]⁺; C₇₀H₉₆F₄IrN₄), 1261 (experimentally obtained).

[Ir(piq)₂(C₁₉-bpy)]ClO₄

¹H NMR (chloroform-*d*, 400 MHz, 25 °C): δ 8.91 (t, J = 5.43Hz, 2H), 8.73 (s, 2H), 8.27 (d, J = 7.99 Hz, 2H), 7.91 (t, J = 4.33 Hz, 2H), 7.78 (t, J = 4.39 Hz, 4H), 7.55 (t, J = 5.61 Hz, 2H), 7.44 (dd, J = 6.47 Hz, 4H), 7.11 (m, J = 5.92 Hz, 4H), 6.87 (t, J = 7.44Hz, 2H), 6.25 (d, J = 6.71 Hz, 2H), 2.90 (t, J = 7.99 Hz, 4H), 1.80(m, 4H),1.25 (s, 64H), 0.87 (t, J = 6.89 Hz, 6H) ; MS (m/z; FAB): 1273.7 (calculated for [Ir(piq)₂(C₁₉-bpy)]⁺; C₈₀H₁₀₄IrN₄) 1279 (experimentally obtained).

Examples of full charts of ¹H NMR spectra

[Ir(dfppy)₂(C₁₂-bpy)]ClO₄ in CDCl₃ (a, c, d and g, f are aliphatic and aromatic protons, respectively)

[Ir(piq)₂(C₁₂-bpy)]ClO₄ in CDCl₃ (a, b, c, d and g, f are aliphatic and aromatic protons, respectively)

Examples of a full chart of ¹³C NMR spectra

[Ir(dfppy)₂(C₁₉-bpy)]ClO₄ in CDCl₃ (the region of aromatic carbons; 32 carbon atoms were identified; triplet peaks at δ = 78 was due to the carbon of CDCl₃).

2. UV-spectra

(C19) C₁₉-bpy

Figure S1. The UV-visible spectra of $[Ir(dfppy)_2(C_n-bpy)]ClO_4$ (solid) and $[Ir(piq)_2(C_n-bpy)]ClO_4$ (dotted) in methanol; C_n -bpy = (C1) C₁-bpy, (C12) C₁₂-bpy and (C19) C₁₉-bpy.

Figure S2. The UV-visible spectra of a suspension of SAP ($6x10^{-6}$ in CEC) adsorbing iridium(III) complexes: (blue) [Ir(dfppy)₂(C₁-bpy)]ClO₄ ($9.3x10^{-7}$ M) was added and (black) [Ir(piq)₂(C₁-bpy)]ClO₄ ($3.1x10^{-7}$ M) was added thereafter.

3. Chromatogram for optical resolution

Figure S3. Chromatogram for resolving iridium(III) complexes: (left) [Ir(dfppy)₂(C₁-bpy)]ClO₄;

The flow rate was 1.0 mLmin⁻¹ and the monitoring wavelength 400 nm.

(right) [Ir(piq)₂(C₁-bpy)]ClO₄; The flow rate was 1.0 mLmin⁻¹ and the monitoring wavelength 500 nm.

The used column was a CHIRALPACK IA (Daicel, Japan). An eluting solvent was acetonitrile containing 0.1 % of diethylamine and trifluroroacetic acid.

4. Stationary emission spectra

Figure S4. The change of the emission spectra of $[Ir(dfppy)_2(C_1-bpy)]^+$ ions adsorbed by SAP, when a methanol solution of $[Ir(piq)_2(C_1-bpy)]ClO_4$ was added. The used enantiomers were (left) Δ - $[Ir(dfppy)_2(C_1-bpy)]^+/\Delta$ - $[Ir(piq)_2(C_1-bpy)]^+$ and (right) Δ - $[Ir(dfppy)_2(C_1-bpy)]^+/\Delta$ - $[Ir(piq)_2(C_1-bpy)]^+$. The medium was 4:1 (v/v) warer/methanol. The concentration of SAP was (upper) 3.0x10⁻⁶ eqL⁻¹ and (lower) 1.2x10⁻⁵ eqL⁻¹ in terms of cation-exchange capacity and the loading of $[Ir(dfppy)_2(C_1-bpy)]^+$ (upper) 60 % and (lower) 15 %, respectively. The loading of $[Ir(piq)_2(C_1-bpy)]^+$ was (upper) (a) 0.0%, (b) 1.8%, (c) 3.8%, (d)7.4%, (e) 11.2%, (f) 15.0% and (g) 18.4% and (lower) (a) 0.0%, (b) 0.45%, (c) 0.95%, (d) 1.8%, (e) 2.8 %, (f) 3.7 % and (g) 4.6 %, respectively.

Figure S5. The change of the emission spectra of $[Ir(dfppy)_2(C_{12}-bpy)]^+$ ions adsorbed by SAP, when a methanol solution of $[Ir(piq)_2(C_{12}-bpy)]ClO_4$ was added. The used enantiomers were (left) Δ - $[Ir(dfppy)_2(C_{12}-bpy)]^+/\Lambda$ - $[Ir(piq)_2(C_{12}-bpy)]^+$ and (right) Δ - $[Ir(dfppy)_2(C_{12}-bpy)]^+/\Delta$ - $[Ir(piq)_2(C_{12}-bpy)]^+$. The medium was 4:1 (v/v) water/methanol. The concentration of SAP was 3.0x10⁻⁶ eqL⁻¹ in terms of cation-exchange capacity and the loading of $[Ir(dfppy)_2(C_1-bpy)]^+$ 60%. The loading of $[Ir(piq)_2L]^+$ was (a) 0.0%, (b) 2.0%, (c) 4.0%, (d)7.9%, (e) 11.8%, (f) 15.7% and (g) 19.5%, respectively.

Figure S6. The change of the emission spectra of $[Ir(dfppy)_2(C_{19}-bpy)]^+$ ions adsorbed by SAP, when a methanol solution of $[Ir(piq)_2(C_{19}-bpy)]ClO_4$ was added. The concentration of SAP was $3.0x10^{-6}$ eqL⁻¹ in terms of cation-exchange capacity and the loading of $[Ir(dfppy)_2(C_1-bpy)]^+$ 60%. The loading of $[Ir(piq)_2L]^+$ was (a) 0.0%, (b) 5.9%, (c) 11.9%, and (d)23.6%, respectively.

5. Dynamic emission properties

SAP	1.2x10 ⁻⁵ M	1.2x10 ⁻⁵ M	6x10 ⁻⁶ M	6x10 ⁻⁶ M
PIQ [M]	$\tau_{fast}/\mu s$	$\tau_{slow}/\mu s$	$\tau_{fast} / \mu s$	$\tau_{slow}/\mu s$
0	0.315	0.713	0.302	0.745
8.8x10 ⁻⁸	0.188	0.604	0.076	0.490
1.7x10 ⁻⁷	0.120	0.513	0.059	0.414
3.5x10 ⁻⁷	0.089	0.442	0.045	0.379
5.3x10 ⁻⁷	0.063	0.380	0.039	0.328
7.1x10 ⁻⁷	0.058	0.385	0.039	0.344
8.8x10 ⁻⁷	0.043	0.344	0.039	0.369

Table S1. The lifetime analyses of the emission decay at 490 nm according to eq. (3) in the text

6. Calculation of spectral overlap integral (J) and Förster radius (R₀)

The rate constant of Förster-type energy transfer (k_{ET}) is expressed by the following equation:

$$k_{ET} = \frac{9000 \ Ln10 \ k^2 \ \Phi}{128\pi^5 n^4 N \tau_D R^6} J(\lambda) \qquad (S1),$$

in which τ_D , *R* and *J* (λ) denote the excited life time of a donor in the absence of an acceptor, the donor/acceptor distance and the spectral overlap integral, respectively. *R*_o (Förster radius) and *J* (λ) are given by equations (S2) and (S3), respectively:

$$R_0 = 9.78 \times 10^{-5} \left(\kappa^2 \phi n^{-4} J(\lambda)\right)^{\frac{1}{6}}$$

(in cm) (S2).

$$J(\lambda) = \frac{\int F_d(\lambda)\varepsilon(\lambda)\lambda^4 d\lambda}{\int F_d(\lambda)d\lambda}$$
(S3)

As for other parameters in equations (S2) and (S3), κ is the orientation factor, ϕ the quantum yield of donor, *n* the refractive index of the medium, *N* the Avogadro constant, λ the wavelength, ε_a the extinction coefficient of the acceptor and F_d the normalized emission intensity of the donor. η_{ET} denotes the energy transfer efficiency and k_{NR} represents the decay constant in the absence of an acceptor. Assuming $\kappa^2 = 2/3$ (random orientation), n = 1.3 and ϕ =0.14, *J* (λ) was calculated to be 1.14 x 10⁻¹⁴ M⁻¹ cm³ from the emission and absorption spectra of the present donor-acceptor pairs. R_o was obtained to be 2.6 nm for a donor/acceptor pair. For a donor/donor pair, *J* (λ) was calculated to be 2.68 x 10⁻¹⁵ M⁻¹ cm³ from the emission and absorption spectra of the present excited donor-donor pairs. R_o was obtained to be 2.0 nm.

7. XRD patterns of ion-exchange adducts

Figure S7. The XRD patterns of SAP: (black) the original sample with the basal spacing (d) of 2.0 nm and (blue) the samples having adsorbed $[Ir(dfppy)_2(C_{12}-bpy)]^+$ to c.a. 90 % of CEC with d = 2.2 nm.