Single-layer graphene-assembled 3D porous carbon composite with PVA and Fe₃O₄ nano-fillers: A promising flexible 3-phase composite with interface-mediated superior dielectric and EMI shielding performance

B.V. Bhaskara Rao^a, Prasad Yadav^c, Radhamanohar Aepuru^b, H.S. Panda^b, S.B. Ogale^c, S.N. Kale^{*a}

^aDepartment of Applied Physics, Defence Institute of Advanced Technology, Girinagar,

Pune 411025, India.

National Chemical Laboratory, Homi Bhabha Road, Pashan, Pune 411008, India.

^bDepartment of Materials Engineering, Defence Institute of Advanced Technology, Girinagar, Pune 411025, India.

SUPPORTING INFORMATION (SI)

Figure S 1 shows conductivity (σ) with reference to wt % of SLGAPC in PVA composites at 1.133 KHz.

Figures S 2 shows Temperature dependence of dielectric permittivity (ϵ) as a function of frequency of I) PVA, II) PVA- Fe₃O₄ and III) PVA-SLGAPC composites.

Figures S 3 shows Temperature dependence of loss tangent (Tan δ) as a function of frequency of I) PVA, II) PVA- Fe₃O₄ and III) PVA-SLGAPC composites.

Figures S 4 shows Temperature dependence of electric modulus (M") as a function of frequency for I) PVA, II) PVA- Fe_3O_4 and III) PVA-SLGAPC composites.

Figures S 5 shows Arrhenius plot in I) PVA, II) PVA- Fe₃O₄, III) PVA-SLGAPC and IV) PVA-SLGAPC- Fe₃O₄ composites.

Figures S 6 a) shows shielding effectiveness (S.E) in terms of individual components i.e. transmission, reflection and absorption vs frequency of sample IV- PVA-SLGAPC- Fe₃O₄. *b)* shows shielding effectiveness vs frequency for different thickness of sample IV- PVA-SLGAPC- Fe₃O₄.