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Ioan Bâldea∗ a‡

Keywords: molecular electronics; electron transport; single-molecule junctions; tunneling barrier; tight binding models; transi-
tion voltage spectroscopy

Model Hamiltonians in second quantization

The second-quantized tight-binding Hamiltonian of model (iv)
presented in the main text has the form
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wherec† andc are creation and annihilation operators for elec-
trons whose spin is omitted for simplicity. It is schematically
depicted inFig. 2a of the main text.

To illustrate that model (iii) presented in the main text represents a
limiting case of model (iv), we give below the transmission function
computed exactly and within the sequential tunneling approximation
for the caseN = 2
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The second-quantized tight-binding Hamiltonian of model (v) de-
scribed in the main text and schematically presented in Fig. 2b of the
main text reads
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whereti and t stand for intra- and inter-ring hopping integrals, re-
spectively.
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Analytical results for the case of a Gaussian
transmission

The Gaussian transmission represents an important particular case
(δ = 2) of the case of arbitraryδ discussed in the main text

Tg(E)≡ Tδ (E)|δ=2 = exp
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For this case, occasionally studied in the literature,1,2 one gets
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Results for the off-resonant Newns-
Anderson model

The currentI and the transition voltagesVt± for positive and negative
bias polarities have been deduced in ref. 3
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Fig. S1(a) The transition voltageVt,exact computed from the current of eqn (14) of the main text due to laterally constricted electrons
tunneling across an energy barrier [termed model (ii) above], along with the approximate estimatesVt,3 andVt,5 obtained by inserting the
expansion coefficientsc2 andc4 of eqn (16) into eqn (5) and (6) of the main text (panel (a). Panel (b)shows thatVt,3 deviates fromVt,exact by
28% (larger than typical experimental uncertainties inVt of ∼ 10%4,5), whileVt,5 agrees withVt,exact within 2%. Notice that the productsaVt ,
aVt,3, andaVt,5 do not depend on the parametera≡ αde/(4

√
εB).
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Fig. S2Results for chains withN = 2 sites [termed model (iv) in the main text] computed by assuming a constant (Fig. 2c of the main text)
and linearly varying (Fig. 2d of the main text) potential. Notice that the impact of the spatial potential profile is weak only at voltages not
much higher than the transition voltageVt .
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Fig. S3Results for chains withN = 3 sites [termed model (iv) in the main text] computed by assuming a constant (Fig. 2c of the main text)
and linearly varying (Fig. 2d of the main text) potential. Notice that the impact of the spatial potential profile is weak only at voltages not
much higher than the transition voltageVt .
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Fig. S4Results for chains withN = 4 sites [termed model (iv) in the main text] computed by assuming a constant (Fig. 2c of the main
text)and linearly varying (Fig. 2d of the main text) potential. Notice that the impact of the spatial potential profile is weak only at voltages not
much higher than the transition voltageVt .
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Fig. S5Results obtained using the Gaussian transmission of Eq. (S4) showing the dependence on∆ of the transition voltage computed exactly
(Vt ), and using its approximate estimates:Vt,approx of eqn (S7), andVapprox

t,3 , Vt,3 andVt,5 obtained from eqn (5), (6), (S8) and (S9). Notice that

bothVapprox
t andVt,5 represent good approximations for large values of the ratioεB/∆.
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Fig. S6Results for model (iv) usingεB = 0.996 eV, a value deduced from the experimental valueVt |N=1 ≃ 1.15 V andth = 0.388 eV, a value
fitting the experimental conductance tunneling attenuation coefficientβ = 1.56 (panel (a)).5 The calculated valuesVt = f (N) (panel (b))
decrease substantially faster with the molecular sizeN than observed experimentally. The spatial potential profile across thesejunctions do not
notably affectVt , as illustrated by the results obtained for constant and linearly varying potentials (panel (c)). The points (panels (b) and (c))
and error bars (panel (b)) represent experimental results for CP-AFM Ag/OPDs/Ag junctions.5
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Fig. S7Results for the conductance (panel (a)) and transition voltage (panel (b)) computed within model (v) using the valueti = 2.5 eV
deduced ab initio as described in the main text and adjusting the parametersεB = 3.433 eV andt = 0.964 eV to fit the experimental values
β = 1.56 andVt |N=1 = 1.15 V. Notice that the calculated dependence ofVt vs. 1/N is significantly faster than observed experimentally. The
points and error bars in panel (b) represent experimental results for CP-AFM Ag/OPDs/Ag junctions.5.
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Fig. S8The approximate estimatesVt,3 andVt,5 computed numerically using the parameter values for model (iv) and (v) “best” adapted to
OPDs junctions (cf. captions of Fig. S6 and S7, respectively) exhibit deviations from theVt -values computed exactly similar to those shown in
Fig. 3b, S1b and 4b, confirming thereby that a correct description of the transition voltageVt needs expansions beyond the third-order.
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