Supplement Information

Characterization of an abnormal photoluminescence behavior

upon crystal-phase transition of perovskite CH₃NH₃PbI₃

1. Temperature dependence of PL properties for the MAPbI₃ in tetragonal and orthorhombic phase.

The stack of the PL spectra are plotted here to identify the changes in the maximum and the shapes of the PL curves, since the variation in intensity of the PL spectra has been shown in the main text.

(a)

(b)

(c)

Fig.S1. (a-b) PL spectra of MAPbI₃ perovskite-crystal film at variable temperatures,

the arrows indicate the evolution tendency of the PL intensity. (c) Evolution of the position of Peak_ O_{I-II} with a decrease in *T*.

2. TRPL spectra of MAPbI₃.

The little shift in the emission maximum suggests that the Peak_T could not be due to DAP recombination. It is noted that when *T* falls to 180K, there is a less than 3 nm shift in Peak_T, and no emergence of higher energy PL feature suggests that the phase transition has not happened yet.

(a)

(b)

(c)

Fig. S2 TRPL spectra of the MAPbI₃ measured at (a) 300K, (b) 260K, (c) 220K and (d) 180K.

3. XRD patterns and crystal structure of the MAPbI₃ in tetragonal and orthorhombic phase

In the high-temperature region, MAPbI₃ perovskite has a tetragonal structure, the space group of which is determined to be I4/mcm (NO. 140). The orthorhombic phase with space group of Pnma (NO.62) is determined in the low-temperature range. Refined atomic position parameters for tetragonal and orthorhombic MAPbI₃ in Fig.S3(c-d) are obtained from the Ref. 6.[1] The black arrow in Fig. S1(c) highlights the transverse displacement of the I atom. The refined lattice parameters of the MAPbI₃ under different temperatures ranging from 13 to 300K are tabulated in TABLE SI.

Fig.S3 (a) and (b): XRD patterns of MAPbI₃ perovskite at 13 and 300 K, respectively; (c) and (d): crystal structures of the tetragonal and orthorhombic MAPbI₃ perovskite.

TABLE SI: Refined lattice parameters determined from the low temperature single crystal X-ray diffraction experiments

Lattice

				parameters	
				(Å)	
Phase	Space Group	<i>T</i> (K)	a	b	с
		300	8.866(1)	12.668(1)	8.866(1)
Tetragonal	I4/mcm (140)	250	8.830(1)	12.683(1)	8.830(1)
		200	8.790(2)	12.662 (3)	8.790(2)
		180	8.791(1)	12.678(1)	8.791(1)
Orthorhombic		150	8.825(4)	12.682(5)	8.594(3)
	Pnma (62)	140	8.869(1)	12.628(1)	8.587(1)
		130	8.868(1)	12.625(2)	8.594(1)
		120	8.868(2)	12.621(1)	8.594(2)
		110	8.868(2)	12.623(1)	8.592(2)
		100	8.864(1)	12.620(1)	8.587(1)
		90	8.866(1)	12.619(1)	8.583(2)
		75	8.864(1)	12.618(0)	8.581(3)
		50	8.863(1)	12.614(1)	8.577(1)
		25	8.856(2)	12.613(0)	8.574(3)
		13	8.855(2)	12.614(0)	8.571(2)

References:

 Feng, J. and B. Xiao, Crystal Structures, Optical Properties, and Effective Mass Tensors of CH3NH3PbX3(X = I and Br) Phases Predicted from HSE06. The Journal of Physical Chemistry Letters, 2014. 5(7): p. 1278-1282.