Supplementary Information

for

Fourier Transform Microwave Spectroscopy of Ac-Ser-NH₂: The Role of the Side Chain Interactions in Peptide Folding

Carlos Cabezas, Martinus A.T. Robben, Anouk M. Rijs, Isabel Peña and J. L. Alonso

Contents :

- Table S1. Calculated spectroscopic parameters for the five lowest energy conformers of Ac-Ser-NH₂ at the B3LYP/6-311++G(d,p) level of theory.

- Table S2. Measured frequencies and residuals (in MHz) for the nuclear quadrupole coupling hyperfine components of the C_7^{eq} -I conformer of Ac-Ser-NH₂.

- Table S3. Observed splittings and residuals (in MHz) for the A-E internal rotation components of the observer conformer of Ac-Ser-NH₂.

- Table S4. Cartesian coordinates for the *ab initio* predicted geometry (MP2/6-311++G(d,p)) level of theory for the observed conformer of Ac-Ser-NH₂.

Table S1. Calculated spectroscopic parameters for the five lowest energy conformers of Ac-Ser-NH₂ at the B3LYP/6-311++G(d,p) level of theory.

	C ₇ ^{eq} -I	C ₅ -I	C ₇ ^{eq} -II	C ₅ -II	C ₅ -III
A ^a	1854	1953	2110	1960	1838
B	992	888	862	853	952
С	741	651	693	734	666
$ \mu_a $	1.9	1.3	3.5	1.5	2.5
μ_b	0.4	0.5	0.8	0.3	1.9
μ_c	0.1	0.4	2.2	0.5	0.6
N_c/χ_{aa}	2.16	2.58	2.33	2.45	2.38
N_c/χ_{bb}	-0.48	0.85	-2.25	-1.45	1.31
N_c/χ_{cc}	-1.68	-3.43	0.08	-1.00	-3.69
N_t/χ_{aa}	0.63	2.38	0.22	1.88	2.18
N_t/χ_{bb}	1.65	1.58	2.33	-0.28	1.02
N_t/χ_{cc}	-2.28	-3.96	-2.55	-1.60	-3.20
ΔE^{b}	0	938	1069	2013	1176
ΔG^{c}	0	561	848	1310	767

^a A, B, and C represent the rotational constants (in MHz); Δ_J is the quartic centrifugal distortion constant (in kHz), χ_{aa} , χ_{bb} and χ_{cc} are the diagonal elements of the ¹⁴N nuclear quadrupole coupling tensor (in MHz); N_c and N_t correspond to the central and terminal ¹⁴N nuclei respectively; μ_a , μ_b and μ_c are the electric dipole moment components (in D). ^b Relative energies (in cm⁻¹) with respect to the global minimum calculated at MP2/6-311++G(d,p) level of theory. ^c Gibbs energies (in cm⁻¹) calculated at 298 K at B3LYP/6-311++G(d,p) level of theory.

J	К′ 1	К′ ₊₁	J′′	К′′ 1	K''_+1	ľ	F′	I''	F′′	Vaha	Vaha -V aal
2	1	2	1	1	1	2	4	2	3	3253 2947	-0.0016
2	1	-	1		1	2	3	2	2	3253 6556	-0.0033
$\frac{1}{2}$			1			1	3	1	$\frac{1}{2}$	3253 7713	0.0013
2			1			2	3	2	3	3254 0502	0.0004
2	0	2	1	0	1	1	2	1	1	3457 7848	0.0004
$\frac{1}{2}$	Ū	-	1	Ū	1	2	4	2	3	3457 8059	0.0009
2			1			1	3	1	2	3457 9453	0.0020
2			1			0	2	2	1	3458 3416	0.0000
$\frac{1}{2}$			1			2	1	$\overline{2}$	1	3458 4543	0.0003
2	1	1	1	1	0	2	4	2	3	3755 1759	0.0004
2	1	1	1	1	Ū	1	1	1	0	3755 7180	0.0044
3	1	3	2	1	2	2	5	2	4	4853 3402	-0.0009
3	-	Ū.	2		-	0	3	0	2	4853 4209	-0.0034
3			2			2	4	2	3	4853 4689	-0.0003
3			$\frac{1}{2}$			1	4	1	3	4853 5106	0.0010
3			2			2	3	2	2	4853 6782	-0.0011
3	0	3	2	0	2	2	5	2	4	5080 1787	-0.0002
3	Ū	5	$\frac{2}{2}$	Ū	2	$\frac{1}{2}$	4	$\frac{2}{2}$	3	5080 2553	0.0001
3			2			0	3	õ	2	5080 2829	-0.0003
3			2			1	4	1	3	5080.3450	0.0002
3			$\frac{2}{2}$			2	3	2	2	5080 4511	0.0002
3	1	3	2	0	2	2	5	2	4	5527 1869	-0.0015
3	1	5	2	Ū	-	2	4	2	3	5527 3630	0.0023
3			$\frac{2}{2}$			1	4	1	3	5527 4459	-0.0023
3			2			2	3	2	2	5527.6396	0.00021
3	1	2	2	1	1	1	3	1	2	5600 4904	0.0014
3	1	-	$\frac{2}{2}$	1	1	2	5	2	4	5600 5726	0.0021
3			2			0	3	õ	2	5600 5994	0.0016
3			2			2	4	2	3	5600.5551	0.0019
3			$\frac{2}{2}$			1	4	1	3	5600.0512	0.0012
4	0	4	3	1	3	2	5	2	4	6169 1921	0.0012
4	Ū		3	1	5	2	6	$\frac{2}{2}$	5	6169 2007	0.00010
4			3			1	4	1	3	6169.2007	-0.0016
4			3			1	5	1	4	6169 2591	0.0010
4	1	4	3	1	3	2	6	2	5	6428 1234	-0.00027
4	1	•	3	1	5	1	4	1	3	6428 1421	0.0019
4			3			2	5	2	4	6428 1947	-0.0002
4			3			1	5	1	4	6428 2288	-0.0003
4			3			2	4	2	3	6428 3229	-0.0002
4	0	4	3	0	3	1	4	1	3	6616 1990	-0.0041
4	Ū	•	3	Ū	5	2	6	2	5	6616 2096	-0.0002
4			3			0	4	0	3	6616 2521	0.0001
4			3			2	2	2	1	6616 2614	0.0000
4			3			1	3	1	2	6616 2826	-0.0008
4			3			2	5	2	4	6616 2973	0.0014
4			3			1	5	1	4	6616 3584	-0.0011
4			3			2	3	2	2	6616 4228	-0.0010
4			ĩ			$\frac{1}{2}$	4	2	3	6616 4596	-0.0021
4	1	4	3 3	0	3	$\frac{1}{2}$	6	$\frac{2}{2}$	5	6875 1312	-0.0019
4	1	•	ĩ	0	5	õ	4	õ	ĩ	6875 1638	0.0065
4			ĩ			1	ว่	1	2	6875 2791	0.0005
4			3 3			2	5	2	4	6875 2996	-0.0009
4			ĩ			1	5	1	4	6875 3341	0.0019
4			ĩ			2	3 3	2	2	6875 3713	-0.0010
4			3			$\overline{2}$	4	$\overline{2}$	3	6875.5089	-0.0031

Table S2. Measured frequencies and residuals (in MHz) for the nuclear quadrupole couplinghyperfine components of the C_7^{eq} -I conformer of Ac-Ser-NH2.

4	2	3	3	2	2	2	2	2	1	6972.0959	0.0009
4			3			0	4	2	4	6972.1293	0.0015
4			3			2	6	2	5	6972.1939	-0.0001
4			3			2	3	2	2	6972.2219	-0.0005
4			3			1	5	1	4	6972.2989	-0.0004
4			3			1	3	1	2	6972.4522	0.0011
4			3			2	5	2	4	6972.4712	-0.0022
4			3			2	4	2	3	6972.5680	-0.0018
4	2	2	3	2	1	1	3	1	2	7364.0801	-0.0030
4			3			2	2	2	1	7364.1195	0.0003
4			3			2	5	2	4	7364.1366	-0.0019
4			3			0	4	1	3	7364.1564	-0.0001
4			3			2	6	2	5	7364.1938	-0.0028
4			3			1	4	0	3	7364.2049	0.0013
4			3			2	4	2	3	7364.3187	-0.0026
4			3			2	3	2	2	7364.4030	0.0013
4			3			1	5	1	4	7364.4225	-0.0011
4	1	3	3	1	2	2	6	2	5	7399.5038	0.0009
4			3			2	5	1	4	7399.5964	0.0004
5	1	5	4	1	4	2	7	2	6	7978.6505	-0.0002
5			4			1	5	1	4	7978.6678	0.0009
5			4			0	5	0	4	7978.6802	0.0007
5			4			2	6	2	5	7978.7055	0.0013
5			4			1	6	1	5	7978.7263	-0.0008
5			4			2	4	2	3	7978.7830	0.0003
5			4			2	5	2	4	7978.7943	0.0009
5	0	5	4	0	4	2	7	2	6	8102.7330	-0.0004
5			4			1	5	1	4	8102.7413	0.0009
5			4			2	3	2	2	8102.7745	0.0027
5			4			1	4	1	3	8102.8155	0.0003
5			4			2	6	2	5	8102.8184	0.0005
5			4			1	6	1	5	8102.8389	-0.0008
5			4			2	4	2	3	8102.8784	-0.0024
5			4			2	5	2	4	8102.9351	0.0005

Table S3. Observed splittings and residuals (in MHz) for the A-E internal rotation components of conformer of Ac-Ser-NH₂.

J	K′.1	$K^{\prime}{}_{+1}$	J΄	K''-1	$K^{\prime\prime}{}_{+1}$	ν_A - ν_E obs.	$(v_{A}-v_{E})_{obs}-(v_{A}-v_{E})_{cal.}$
4	1	4	3	1	3	-133.667	-0.025
4	0	4	3	0	3	125.073	-0.042
4	3	2	3	3	1	-24.529	0.031
4	2	3	3	2	2	-165.277	-0.014
4	3	1	3	3	0	24.177	0.031
4	2	2	3	2	1	146.979	0.063
4	1	3	3	1	2	64.338	-0.016
5	1	5	4	1	4	-134.729	-0.037
5	0	5	4	0	4	136.462	-0.042
6	1	6	5	1	5	-116.850	-0.074
6	0	6	5	0	5	123.951	0.110
6	1	5	5	1	4	97.913	-0.113
7	1	7	6	1	6	-100.275	-0.061
7	0	7	6	0	6	110.650	-0.064
5	1	4	4	1	3	72.986	0.054
5	2	4	4	2	3	-167.577	0.092

5	3	3	4	3	2	-70.178	0.081
5	3	2	4	3	1	65.861	0.073
5	2	3	4	2	2	145.176	-0.099
6	2	5	5	2	4	-147.712	0.053
6	3	4	5	3	3	-145.442	0.113
6	4	3	5	4	2	-18.007	0.075
6	4	2	5	4	1	21.677	-0.101
6	3	3	5	3	2	133.416	0.097
6	2	4	5	2	3	114.593	0.126

Table S4. Cartesian coordinates for the observed conformer C_7^{eq} -I of Ac-Ser-NH₂. The geometries have been optimized *ab initio* at the MP2/6-311++G(d,p) level of theory.

Principal	axis orientation:			
Center	Atomic	Coordinat	tes (Angstron	 ms)
Number	Number	Х	Ŷ	Z
1	6	0.479284	-0.126350	0.674310
2	6	1.055048	1.063997	-0.109246
3	8	2.115418	0.977364	-0.728395
4	7	-0.633231	-0.715006	-0.055524
5	6	-1.892558	-0.204305	0.002065
6	8	-2.157398	0.808884	0.654990
7	7	0.303976	2.190820	-0.038313
8	1	-0.410814	-1.491390	-0.665654
9	1	0.546643	2.949994	-0.659323
10	1	0.100795	0.226145	1.640869
11	6	1.543959	-1.197376	0.884613
12	1	1.133150	-1.995914	1.507231
13	1	2.405935	-0.754173	1.396132
14	8	1.919293	-1.790216	-0.349246
15	1	2.340579	-1.069608	-0.839718
16	6	-2.949630	-0.964363	-0.766858
17	1	-3.448726	-0.274054	-1.450278
18	1	-2.544413	-1.808066	-1.329358
19	1	-3.694440	-1.330039	-0.055869
20	1	-0.645836	2.112288	0.312787