Supplementary materials

for

Exploring PtSO4 and PdSO4 phases: an evolutionary algorithm based investigation

Hom Sharma¹, Vinit Sharma², and Tran Doan Huan^{2,3}*

¹Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT 06269, USA

²Material Science and Engineering, University of Connecticut, Storrs, CT 06269 USA

³Institute of Engineering Physics, Hanoi University of Science and Technology, 1 Dai Co Viet Rd., Hanoi, Vietnam

S1: Structural Information

Table S1: Structural parameters of the predicted structures of (a) PdSO₄ and (b) PtSO₄. For comparison available structural parameters are shown in parentheses.

(a) PdSO ₄										
Phase	Lattic	e parameter	(in Å)	La	ttice angle (i	n°)	Ato	mic coordin	ates	
1 mase	а	b	С	α	β	γ	Wyckoff position	x	у	Ζ
					$\mathbf{Z} = \mathbf{z}$	2				
D ()			0.000	00.00			8k (O)	0.1759	0.7809	0.1574
$P4_2/m$	4.442	4.442	8.908	90.00	90.00	90.00	2e (S)	0.0000	0.0000	0.2500
							2c (Pd)	0.0000	0.5000	0.0000
	7 495	6.323	7 778		100 48		8f (O)	0.1698	0.0554	0.7911
C2/c	(7.286)	(6.692	(7.651)	90.00	(103.18)	90.00	81 (O) 4e (S)	-0.0168	0.2081	0.4048
	· /)	· /		· /		4c(8)	0.0000	0.0737	0.2300
							16k (O)	0.2300	0.5962	0.3446
Ibam	4.097	9.477	8.943	90.00	90.00	90.00	4a (S)	0.5000	0.0000	0.2500
							4d (Pd)	0.5000	0.0000	0.0000
D /	(190	(190	4.040	00.00	00.00	00.00	8g (O)	0.2500	0.2500	0.3457
P_4/n	0.189	0.189	4.940	90.00	90.00	90.00	2b (S)	0.2500	0.7500	0.5000
							2c (Pd)	0.6838	0.4298	0.6847
							8k (O)	0.0876	0.0971	0.2990
<i>I222</i>	9.345	9.707	4.183	90.00	90.00	90.00	$\frac{8K}{2}$	0.5981	0.0860	0.2970
			1.105				2c(3) 2d(S)	0.0000	0.0000	0.0000
							4h (Pd)	0.5000	0.2279	0.0000
							8g (O)	0.0000	0.0000	0.0000
I-4	5.995	5.995	4.366	90.00	90.00	90.00	2c (S)	0.0000	0.5000	0.2500
							2a (Pd)	0.8972	0.6755	0.0512
					Z =	4				
								0.5783	0.9199	0.9227
							1a (Pd)	0.9179	0.5768	0.5736
								0.0748	0.4168	0.0735
								0.4213	0.0798	0.4228
							1a(S)	0.0770	0 9183	0 9982
							14 (0)	0.4196	0.5788	0.4983
								0.9195	0.0788	0.4981
								0.5770	0.4182	0.9980
							1a (O)	0.7540	0.3510	0.0889
								0.1018	0.1470	0.4080
P1 (alpha)	6.1895	6.1895	10.097	89.26	89.15	90.01		0.7421	0.0159	0.4072
								0.3947	0.4817	0.0880
								0.4871	0.4003	0.4085
								0.1415	0.0966	0.0881
								0.0104	0.7508	0.0893
								0.3304	0.7397	0.4071
								0.2379	0.5125	0.5894
								0.5977	0.6435	0.5882
								0.2582	0.8549	0.9070
								0.8520	0.2561	0.5891
								0.5145	0.2406	0.9070
								0.6455	0.6003	0.9079
							1 a (D.J.)	0.9828	0.8967	0.5881
	7.8858	5.3736	8.7481	90.00	82.56	90.00	1a (Pd)	0.3270	0.0932	0.8940
								0.3270	0.1932	0.3940
P1 (beta)								0.8269	0.6932	0.3939
							1a (S)			
								0.5635	0.0346	0.0877
				1				0.5635	0.8518	0.5877

2

	0.0905	0.5347	0.2002
	0.0905	0.3517	0.7003
1a (O)			
	0.0844	0.7472	0.3140
	0.1078	0.2657	0.5366
	0.1078	0.6207	0.0366
	0.0845	0.1391	0.8140
	0.5462	0.1206	0.2514
	0.5463	0.7658	0.7513
	0.2346	0.3607	0.2122
	0.2347	0.5257	0.7122
	0.4193	0.0258	0.5758
	0.4194	0.8605	0.0758
	0.9165	0.4172	0.2383
	0.5694	0.6393	0.4739
	0.5694	0.2470	0.9739
	0.9165	0.4693	0.7384
	0.7375	0.9171	0.0497
	0.7375	0.9693	0.5495

(b) PtSO₄

	Lattic	e narameter	(in Å)	La	ttice angle (ir	n°)	Ato	mic coordin	c coordinates		
Phase	a	b	(1111) C	α	β	γ	Wyckoff position	x	v	Z	
	1						2 33 1				
Z = 2											
							2c (Pt)	0.0000	0.5000	0.0000	
$P4_2/m$	4.451	4.451	8.859	90.00	90.00	90.00	2e (S)	0.0000	0.0000	0.2500	
							8k (O)	0.1770	0.7804	0.1575	
	5 045	6.004	F (02)		10100		4c (Pt)	0.2500	0.2500	0.0000	
C2/c	7.045	6.994	7.683	90.00	104.93	90.00	4e (S)	0.0000	0.0676	0.2500	
	(7.154)	$(0.553)^{\circ}$	$(7.679)^{10}$		$(102.19)^{\circ}$		8f (O)	-0.0118	0.1892	0.4073	
							8f (O)	0.6847	0.4511	0.3017	
Than	4 1 1 2	0 465	0 070	00.00	00.00	00.00	4c (Pt)	0.0000	0.0000	0.0000	
Ibam	4.115	9.403	0.070	90.00	90.00	90.00	4b (S)	0.5000	0.0000	0.2500	
							16k (O)	0.2055	0.5972	0.3447	
D /m	6 201	6 201	4 000	00.00	00.00	00.00	2c (Pt)	0.2500	0.2500	0.3428	
<i>F</i> ₄/ <i>N</i>	0.201	0.201	4.900	90.00	90.00	90.00	2b (S)	0.2500	0.7500	0.5000	
							8g (O)	0.6899	0.4301	0.6891	
							4h (Pt)	0.5000	0.2286	0.0000	
1222	0.442	0 776	4 109	00.00	00.00	00.00	2c (S)	0.0000	0.0000	0.5000	
1222	9.442	9.770	4.108	90.00	90.00	90.00	2d (S)	0.0000	0.5000	0.0000	
							8k (O)	0.0865	0.0976	0.2952	
							8k (O)	0.5981	0.0847	0.2917	
I A	6.062	6.063	4 218	00.00	00.00	00.00	2a (Pt)	0.0000	0.0000	0.0000	
1-4	0.003	0.003	4.210	90.00	90.00	90.00	2c (S)	0.0000	0.5000	0.2500	
							8g (O)	-0.0916	0.6771	0.0399	
					Z = 4	ŀ					
							1a (Pt)	0.5782	0.9204	0.9228	
								0.9182	0.5767	0.5734	
								0.0748	0.4171	0.0733	
								0.4217	0.0797	0.4229	
							1a (S)				
								0.0767	0.9186	0.9980	
								0.4199	0.5784	0.4982	
								0.9198	0.0785	0.4983	
$\mathbf{D}(11)$	(1002	(1002	10.170	00.00	00.17	00.00		0.5767	0.4186	0.9981	
PI (alpha)	6.1992	6.1992	10.178	89.28	89.17	90.00	1a (O)				
								0.7544	0.3562	0.0893	
								0.1023	0.1413	0.4076	
								0.7422	0.0204	0.4069	
								0.3943	0.4770	0.0889	
								0.4824	0.4000	0.4075	
								0.1356	0.0970	0.0887	
								0.0147	0.7368	0.0894	
								0.3615	0.7601	0.4068	
	1			1				0.8985	0 9809	0 9074	

								0.2379	0.5166	0.5895
								0.5981	0.6376	0.5888
								0.2586	0.8601	0.9068
								0.8573	0.2563	0.5895
								0.5189	0.2407	0.9067
								0.6398	0.6009	0.9075
								0.9780	0.8963	0.5890
								0.3271	0.6931	0.8940
							1a (Pt)	0.3270	0.1932	0.3940
								0.8269	0.1932	0.8940
								0.8270	0.6932	0.3940
							1a (S)	0.5588	0.0264	0.0825
								0.5588	0.8600	0.5825
								0.0951	0.5264	0.2054
								0.0951	0.3600	0.7055
							1 (0)	0.0000		
							Ia (O)	0.0903	0.7277	0.3194
								0.1113	0.2801	0.5416
P1 (beta)	7.8094	5.6949	8.7655	90.00	81.71	90.00		0.1113	0.6062	0.0416
								0.0902	0.1586	0.8194
								0.5427	0.1063	0.2464
								0.5427	0.7800	0.7464
								0.2400	0.5001	0.2145
								0.2407	0.5201	0.7145
								0.4133	0.0203	0.5/35
								0.4134	0.8000	0.0735
								0.91/5	0.4195	0.2485
								0.3030	0.038/	0.4085
								0.0000	0.2277	0.9085
								0.91/5	0.4070	0.7483
								0.7303	0.9193	0.0390
	1			1				U. (30.)	0.9009	0.0390

S2: X-Ray Diffraction (XRD) Patterns

Figure S1: (i) Simulated X-ray diffraction patterns of all the low-energy structures predicted for Z=2 of (a) PdSO₄ and (b) PtSO₄ at ambient pressure. For PdSO₄, XRD pattern for the monoclinic (space group C2/c) is simulated using available experimental parameters. [1] While for PtSO₄, XRD pattern is compared with the structure suggested by Derzsi *et al.*[2]

(ii) Simulated X-ray diffraction patterns of all the low-energy structures predicted for Z=4 of (a) PdSO₄ and (b) PtSO₄ at ambient pressure.

S3: Phonon density of states

Fig S2: (i) phonon density of the state for the selected stable phases of $PtSO_4$ (lower panels) and $PdSO_4$ (upper panels) predicted by USPEX. Phonon densities of the state of the most stable phases of both sulfates are shown in the main text.

Fig S2: (ii) phonon density of the state for the most stable phases of (a) Pt, (b) PdO, (c) PdS, (d) Z4 PdSO₄ (α), (e) Z4 PdSO₄ (β), (f) Pt, (g) PtO, (h) PtS, (i) Z4 PtSO₄ (α), and (j) Z4 PtSO₄ (β), phases.

S4: Free energy diagram (Ellingham Diagram).

Figure S3: Free energy plot for the decomposition of $PdSO_4$ and $PtSO_4$ to their metal oxides, sulfur tri-oxide, metal sulfides, and elemental compositions. Negative value of ΔG suggests that the compound is stable towards decomposition. For the reaction Pd/PtSO4 \rightarrow Pt/Pd + S + O₂, the latent heat of fusion (1.73 kJ mol⁻¹) and latent heat of vaporization (9.8 kJ mol⁻¹) of sulfur are also considered while computing ΔG given the melting of 388.36 K and boiling point of 717.87 K. [3, 4] Small shift in ΔG value can be seen at ~700 K due to the phase change in sulfur. In the positive ΔG range, the sulfates are no longer thermodynamically stable.

S5: Electronic density of states

Figure S4: (i) Electronic density of states of the Z = 2 low-energy phases of (a) PdSO₄ and (b) PtSO₄. The bottom of valence bands (below -4 eV) and the top of conduction band (above 4 eV), not shown, consist of bands mainly due to P (2*p*) and S (2*s*) states.

(ii) Electronic density of states of Z = 4 low-energy structures of (a) PdSO₄ and (b) PtSO₄.

References

[1] D. L. Mowery and R. L. McCormick, Appl. Catal. B: Env. 34, 287 (2001).

[2] M. Derzsi, A. Hermann, R. Ho_mann, and W. Grochala, Eur. J. Inorg. Chem. 2013, 5094 (2013).

[3] R.H. Schumm, D.D. Wagman, S. Bailey, W.H. Evans, and V.B. Parker in National Bureau of Standards (USA) Technical Notes 270-1 to 270-8, 1973.

[4] J.D. Cox, DD., Wagman, and V.A. Medvedev, CODATA Key Values for Thermodynamics, Hemisphere Publishing Corp., New York, USA, 1989.