SUPPORTING INFORMATION

Phosphonic anchoring groups in organic dyes for solid-state solar cells

Antonio Abate,^{a,c,*} Raquel Pérez Tejada,^c Konrad Wojciechowski,^a Jamie M. Foster,^d Aditya Sadhanala,^b Ullrich Steiner,^b Henry J. Snaith,^{a,*} Santiago Franco,^{c,*} Jesús Orduna.^c

^aDepartment of Physics, University of Oxford, Oxford, Parks Road, OX1 3PU, U.K.

^bCavendish Laboratory, Department of Physics, University of Cambridge, 19 JJ Thomson Ave, Cambridge, CB3 0HE, UK

^cInstituto de Ciencia Materiales de Aragón, Departamento Química Orgánica, Universidad de Zaragoza-CSIC, Spain

^dDepartment of Mathematics & Statistics, McMaster University, Hamilton, Ontario, L8S 4K1, Canada.

* Corresponding authors: AA antonioabate83@gmail.com, HJS h.snaith1@physics.ox.ac.uk, SF sfranco@unizar.es.

KEYWORDS. Organic dyes, solid-state dye-sensitized solar cells, phosphonic acid anchoring group

INDEX

- Computational details
- NMR spectra
- Absorption and emission spectra in tBuOH:CH₃CN (1:1)
- Electrochemical characterisation
- Relative dye concentration on the TiO₂ surface
- Dye solution calibration curves
- Device performance parameters collected over 6 months of experiments

Computational details

Pyt-COOH

Optimized ground state geometry in DMF (CPCM-6-31G*/M06-2x)

		Standard o	rientation:		
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)
Number	Number	Type	X	Y	Z
1	6	0	1.798066	0.896518	-0.087146
2	6	0	0.778068	0.010224	-0.176956
3	6	0	1.016905	-1.412104	-0.122982
4	6	0	2.414575	-1.772091	-0.055259
5	6	0	3.386909	-0.836087	0.004973
6	1	0	-0.211007	0.414028	-0.331489
7	1	0	2.688304	-2.819961	-0.021334
8	6	0	4.835748	-1.083030	0.091937
9	6	0	5.686691	-0.096104	0.604/11
10	6	0	5.3/5101	-2.303168	-0.334330
11	6	0	7.053315	-0.335684	0.702961
12	1	0	5.2/4381	0.850981	0.936301
13	6	0	6.741035	-2.536941	-0.232821
14	1	0	4.731503	-3.062483	-0.767141
15	6	0	7.583591	-1.555281	0.28//32
16	1	0	7.705186	0.432023	1.10/188
1/	1	0	7.149406	-3.483499	-0.5/1/26
18	1	0	8.650553	-1.739145	0.363847
19	6	6	1.670209	2.303//3	-0.120227
20	6	6	2.779781	3.154575	-0.444305
21	6	6	0.446296	2.980971	0.169163
22	0	0	2.000295	4.539334	-0.492417
25	1	0	5.750015	2.001333	-0.00/102
24	0	0	0.332/2/	4.304//4	0.11/09/
25	1	0	-0.410030	2.30/22/	0.400920
20	1	0	2 524169	5.14/30/	0.214024
2/	1	0	5.524100 0 610006	J.143143 A 922265	0 245244
20	1	0	1 246924	4.033203	0.343344
29	2	0	2 025274	0.220450	-0.252112
21	6	0	0.065274	-2 /07222	-0 125915
22	1	0	0.000277	-2.40/322	-0.155815
32	5	9	-1 35/783	-2 315800	-0.1290/1
34	16	a	-2 288528	-0 835714	-0.015273
35		a	-3 414521	-3 113500	-0.136886
36	6	â	-3 759226	-1 773365	-0 046403
37	1	â	-4,154107	-3,908028	-0.174168
38	- 6	â	-5.094579	-1,298314	0.002358
39	6	â	-5.559298	-0.018510	0.096203
40	1	0	-5.851427	-2.078371	-0.042441
41	- 6	0	-4,694579	1.117634	0.169629
42	7	0	-3,986024	2.033478	0.230287
43	6	0	-7.001980	0.299376	0.133098
44	8	0	-7.443200	1.424029	0.222946
45	8	0	-7.777989	-0.791248	0.055873
46	1	0	-8.704245	-0.492263	0.089567
47	7	0	-2.109174	-3.416192	-0.179376
	-	-			

Pyt-COOH

Optimized first excited state geometry in DMF (CPCM-TD-6-31G*/M06-2x)

Standard orientation:						
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)	
Number	Number	Туре	X	Y	Z	
1	6	0	1.782775	0.908636	-0.216962	
2	6	0	0.774282	0.004616	-0.390528	
3	6	0	1.030083	-1.392966	-0.319898	
4	6	0	2,390973	-1.773053	-0.141575	
5	6	0	3, 372093	-0.834610	-0.001541	
6	1	0	-0.205806	0.386426	-0.640504	
7	1	0	2.651148	-2.823435	-0.087684	
8	6	0	4.798696	-1.083071	0.197692	
9	6	0	5.631002	-0.058442	0.674925	
10	6	0	5.353190	-2.341684	-0.085427	
11	6	0	6.985602	-0.295443	0.874935	
12	1	0	5.210220	0.915451	0.900069	
13	6	0	6.707181	-2.569648	0.116694	
14	1	0	4.733403	-3.137122	-0.486102	
15	6	0	7.527964	-1.549160	0.598489	
16	1	0	7.619401	0.501626	1.249915	
17	1	0	7.125998	-3.544730	-0.109875	
18	1	0	8.586538	-1.730961	0.754078	
19	6	0	1.651997	2.363603	-0.259477	
20	6	0	2.787426	3.167138	-0.445210	
21	6	0	0.394786	2.973261	-0.114351	
22	6	0	2.662588	4.549836	-0.499797	
23	1	0	3.760768	2.703321	-0.562251	
24	6	0	0.279110	4.355140	-0.172014	
25	1	0	-0.491923	2.374202	0.070381	
26	6	0	1.410533	5.148209	-0.366315	
27	1	0	3.545899	5.161923	-0.651360	
28	1	0	-0.696440	4.815253	-0.053536	
29	1	0	1.316138	6.228553	-0.408635	
30	8	0	3.056791	0.488599	-0.007585	
31	6	0	0.043739	-2.414063	-0.431489	
32	1	0	0.409357	-3.430870	-0.552342	
33	6	0	-1.338987	-2.322306	-0.377978	
34	16	0	-2.271488	-0.850852	-0.018615	
35	6	0	-3.399797	-3.127907	-0.434798	
36	6	0	-3.746541	-1.771077	-0.145031	
37	1	0	-4.156449	-3.898049	-0.552038	
38	6	0	-5.055686	-1.305399	0.000381	
39	6	0	-5.501960	-0.011930	0.261050	
40	1	0	-5.828849	-2.061094	-0.110713	
41	6	0	-4.626493	1.096796	0.415156	
42	7	0	-3.911134	2.005725	0.538821	
43	6	0	-6.923805	0.315528	0.384456	
44	8	0	-7.362417	1.430554	0.600549	
45	8	0	-7.726489	-0.756769	0.231656	
46	1	0	-8.642047	-0.440114	0.326434	
47	7	0	-2.129031	-3.419702	-0.555002	

Pyt-COOH

Calculated Absorption Spectrum in DMF

(CPCM-TD-M06-2x/6-311+G(2d,p)//CPCM-M06-2x/6-31G*):

H-1->LUMO (6%)
H-2->LUMO (9%),
H-2->LUMO (3%),
HOMO->L+1 (7%),
H H H

Pyt-PO(OH)₂

Optimized ground state geometry in DMF (CPCM-6-31G*/M06-2x)

Standard orientation:						
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)	
Number	Number	Туре	x	Y	Z	
1	6	0	2.369167	0.895625	-0.072787	
2	6	0	1.366329	-0.010068	-0.156846	
3	6	0	1.633057	-1.428463	-0.107874	
4	6	0	3.038776	-1.759968	-0.044378	
5	6	0	3.992624	-0.805401	0.009156	
6	1	0	0.368024	0.375252	-0.298388	
7	1	0	3.333488	-2.802157	-0.010755	
8	6	0	5.446806	-1.023173	0.088518	
9	6	0	6.280621	-0.016879	0.591577	
10	6	0	6.008971	-2.233663	-0.335786	
11	6	0	7.652630	-0.227238	0.681734	
12	1	0	5.851223	0.923104	0.921681	
13	6	0	7.380175	-2.438406	-0.242151	
14	1	0	5.379018	-3.008450	-0.761261	
15	6	0	8.205672	-1.437248	0.268316	
16	1	0	8.290646	0.556060	1.078165	
17	1	0	7.805835	-3.377925	-0.579487	
18	1	0	9.276722	-1.598562	0.337971	
19	6	0	2.212900	2.360562	-0.099989	
20	6	0	3.305944	3.173080	-0.426221	
21	6	0	0.979639	2.954290	0.198531	
22	6	0	3.161586	4.555748	-0.466639	
23	1	0	4.263436	2.718312	-0.656274	
24	6	0	0.841125	4.336161	0.154256	
25	1	0	0.129627	2.343619	0.487543	
26	6	0	1.930367	5.140598	-0.179159	
27	1	0	4.013305	5.176032	-0.726204	
28	1	0	-0.117747	4.786296	0.389992	
29	1	0	1.819427	6.219816	-0.209916	
30	8	0	3.665703	0.516490	0.024292	
31	6	0	0.704732	-2.442906	-0.119094	
32	1	0	1.078338	-3.462651	-0.111351	
33	6	0	-0.719907	-2.385306	-0.118765	
34	16	0	-1.689461	-0.925456	-0.042195	
35	6	0	-2.761641	-3.229767	-0.122259	
36	6	0	-3.136288	-1.898658	-0.061797	
37	1	0	-3.481261	-4.042742	-0.146376	
38	6	0	-4.483455	-1.445288	-0.028176	
39	6	0	-4.970428	-0.173661	0.024999	
40	6	0	-4.141584	0.985755	0.062614	
41	7	0	-3.490724	1.946093	0.096587	
42	15	0	-6.742215	0.066897	0.078019	
43	8	0	-7.494155	-1.206501	0.068398	
44	8	0	-6.956034	1.086534	-1.136667	
45	1	0	-7.840678	1.492827	-1.151024	
46	8	0	-7.056681	1.032093	1.326352	
47	1	0	-7.268358	0.533700	2.134035	
48	1	0	-5.230098	-2.238605	-0.049074	
49	7	0	-1.446978	-3.502289	-0.152312	

Pyt-PO(OH)₂

Optimized first excited state geometry in DMF (CPCM-TD-6-31G*/M06-2x)

Standard orientation:						
Center	Atomic	Atomic	Coord	dinates (Ang	stroms)	
Number	Number	Туре	X	Y	Z	
1	6	0	2.333299	0.899767	-0.297492	
2	6	0	1.358901	-0.029517	-0.525686	
3	6	0	1.645965	-1.419464	-0.439393	
4	6	0	3.004094	-1.767493	-0.191129	
5	6	0	3.952914	-0.805275	0.003508	
6	1	0	0.384327	0.325804	-0.831458	
7	1	0	3.285842	-2.811600	-0.124435	
8	6	0	5.371640	-1.014925	0.284396	
9	6	0	6.151531	0.042386	0.779028	
10	6	0	5.972635	-2.265761	0.066782	
11	6	0	7.498527	-0.152793	1.058162	
12	1	0	5.695361	1.010061	0.955523	
13	6	0	7.318650	-2.452152	0.348615	
14	1	0	5.396629	-3.088818	-0.343454	
15	6	0	8.086717	-1.398491	0.845958	
16	1	0	8.090044	0.670804	1.444900	
17	1	0	7.773000	-3.421736	0.172868	
18	1	0	9.139356	-1.548701	1.063191	
19	6	0	2.168966	2.350572	-0.341586	
20	6	0	3.292898	3.182842	-0.460586	
21	6	0	0.891341	2.929133	-0.260214	
22	6	0	3.137763	4.562486	-0.511715	
23	1	0	4.282069	2.743520	-0.529185	
24	6	0	0.745574	4.308290	-0.314368	
25	1	0	0.011419	2.306511	-0.127464	
26	6	0	1.866317	5.129861	-0.441602	
27	1	0	4.012873	5.196900	-0.609125	
28	1	0	-0.245671	4.744278	-0.244395	
29	1	0	1.748125	6.207985	-0.480266	
30	8	0	3.604914	0.510016	-0.020796	
31	6	0	0.686196	-2.462853	-0.596674	
32	1	0	1.076876	-3.468003	-0.735941	
33	6	0	-0.697339	-2.398703	-0.556354	
34	16	0	-1.654204	-0.953520	-0.152953	
35	6	0	-2.745251	-3.235221	-0.638635	
36	6	0	-3.111730	-1.896441	-0.303425	
37	1	0	-3.489701	-4.013601	-0.778277	
38	6	0	-4.426004	-1.449474	-0.129023	
39	6	0	-4.881718	-0.172574	0.177041	
40	6	0	-4.038864	0.950688	0.356233	
41	7	0	-3.379031	1.898569	0.510073	
42	15	0	-6.629058	0.084926	0.374715	
43	8	0	-7.423189	-1.154821	0.210739	
44	8	0	-6.915527	1.293619	-0.641475	
45	1	0	-7.781420	1.714566	-0.496138	
46	8	0	-6.870324	0.852677	1.774156	
47	1	0	-7.000598	0.233896	2.512603	
48	1	0	-5.197336	-2.207762	-0.251738	
49	7	0	-1.469996	-3.503274	-0.770482	

Pyt-PO(OH)₂

Calculated Absorption Spectrum in DMF

(CPCM-TD-M06-2x/6-311+G(2d,p)//CPCM-M06-2x/6-31G*):

No.	Energy (cm-1)	Wavelength (nm)	f	Major contribs
1	19541.33568	511.735746407	1.309	HOMO->LUMO (97%)
2	29548.3256	338.428651944	0.2418	HOMO->L+1 (79%) H-1->LUMO (5%), HOMO->L+2 (7%)
3	32050.27472	312.009806074	0.3965	H-1->LUMO (12%), HOMO->L+1 (11%), HOMO->L+2 (63%)
				H-2->LUMO (6%)
4	33035.89104	302.701083131	0.6678	H-1->LUMO (68%), HOMO->L+2 (14%) H-2->LUMO (3%),
				H-1->L+1 (4%), H-1->L+2 (4%)
5	36524.26304	273.790602949	0.1353	H-2->LUMO (78%) H-5->LUMO (6%), HOMO->L+2 (9%)
6	39059.28112	256.02109699	0.0884	H-4->LUMO (41%), H-4->L+1 (23%) H-7->LUMO (3%),
				H-3->LUMO (4%), H-1->L+1 (4%), H-1->L+4 (3%),
				H-1->L+5 (2%), HOMO->L+4 (3%), HOMO->L+5 (3%)

Pyt-PO(OEt)OH

Optimized ground state geometry in DMF (CPCM-6-31G*/M06-2x)

Standard orientation:					
Center	Atomic	Atomic	Coord	linates (Ang	stroms)
Number	Number	Туре	x	Y	Z
1	6	0	2.808704	0.887389	-0.171869
2	6	0	1.833806	-0.045755	-0.281242
3	6	0	2.128050	-1.452988	-0.144687
4	6	0	3.532918	-1.746421	0.030628
5	6	0	4.459278	-0.766851	0.107359
6	1	0	0.840307	0.306534	-0.515050
7	1	0	3.847157	-2.778319	0.133425
8	6	0	5.908523	-0.940398	0.302506
9	6	0	6.678224	0.116908	0.803034
10	6	0	6.529953	-2.156507	-0.007375
11	6	0	8.044736	-0.047142	1.003479
12	1	0	6.202160	1.061678	1.042811
13	6	0	7.895447	-2.314900	0.196380
14	1	0	5.952983	-2.973283	-0.429675
15	6	0	8.656422	-1.262315	0.703511
16	1	0	8.631693	0.776801	1.396568
17	1	0	8.368566	-3.259753	-0.050757
18	1	0	9.723201	-1.388441	0.858956
19	6	0	2.625397	2.344697	-0.285507
20	6	0	3.719920	3.163103	-0.590989
21	6	0	1.364993	2.924896	-0.091264
22	6	0	3.551349	4.537908	-0.714189
23	1	0	4.697712	2.718373	-0.741192
24	6	0	1.202607	4.299106	-0.217591
25	1	0	0.512615	2.309658	0.180795
26	6	0	2.293885	5.109121	-0.530164
27	1	0	4.404316	5.162975	-0.957759
28	1	0	0.223161	4.739530	-0.062015
29	1	0	2.164064	6.182525	-0.625344
30	8	0	4.102363	0.545198	0.036789
31	6	0	1.225879	-2.490729	-0.170155
32	1	0	1.622221	-3.498881	-0.092617
33	6	0	-0.196742	-2.470339	-0.259267
34	16	0	-1.203532	-1.034397	-0.289462
35	6	0	-2.213407	-3.367864	-0.344385
36	6	0	-2.623443	-2.045576	-0.353764
37	1	0	-2.910753	-4.199574	-0.377764
38	6	0	-3.981031	-1.628192	-0.411877
39	6	0	-4.503462	-0.369037	-0.429342
40	6	0	-3.707233	0.812760	-0.377916
41	7	0	-3.083349	1.790518	-0.333073
42	15	0	-6.281645	-0.170222	-0.481769
43	8	0	-7.004659	-1.461566	-0.458622
44	8	0	-6.470676	0.768338	-1.764408
45	1	0	-7.386686	1.073504	-1.889246
46	8	0	-6.655613	0.848827	0.696340
47	1	0	-4.704805	-2.442034	-0.448073
48	7	0	-0.893457	-3.606797	-0.291987
49	6	0	-6.687659	0.337102	2.048979
50	6	0	-6.947792	1.504606	2.972971
51	1	0	-5.723908	-0.136882	2.269202
52	1	0	-7.474010	-0.419455	2.116282
53	1	õ	-6.978515	1.155982	4,008316
54	1	õ	-6.154704	2.250338	2,877842
55	1	õ	-7.905217	1.974491	2,734274

Pyt-PO(OEt)OH

Optimized first excited state geometry in DMF (CPCM-TD-6-31G*/M06-2x)

Standard orientation:							
Center Atomic Atomic Coordinates (Angstroms)							
Number	Number	Туре	Х	Ŷ	Z		
1	6	0	2.786587	0.890434	-0.359773		
2	6	0	1.841766	-0.061833	-0.616938		
3	6	0	2.142155	-1.443161	-0.465850		
4	6	0	3.486055	-1.761393	-0.119208		
5	6	0	4.406207	-0.777982	0.104176		
6	1	0	0.883322	0.266353	-0.995569		
7	1	0	3.777749	-2.798076	-0.000060		
8	6	0	5.806467	-0.955795	0.482707		
9	6	0	6.537983	0.126860	0.995800		
10	6	0	6.437045	-2.202773	0.340875		
11	6	0	7.865996	-0.040388	1.368356		
12	1	0	6.058480	1.092047	1.115027		
13	6	0	7.763882	-2.361145	0.715381		
14	1	0	5.900346	-3.045179	-0.083159		
15	0	0	8.483294 0.410654	-1.282581	1.231610		
10	1	0	0.419054	-2 220166	1.709030		
18	1	0	0.241304	-1 110296	1 521059		
10	6	0	2 608598	2 335884	-0 472873		
20	6	0	3 729056	2.333884	-0.472873		
20	6	0	1 322304	2 898840	-0 523738		
22	6	0	3.563505	4.553356	-0.655880		
23	1	0	4,725396	2.752846	-0.496712		
24	6	0	1.166405	4.272069	-0.649939		
25	1	0	0.440572	2.270289	-0.441531		
26	6	0	2.284570	5.104346	-0.717982		
27	1	0	4.436768	5.195565	-0.706397		
28	1	0	0.168006	4.695755	-0.685294		
29	1	0	2.157839	6.177951	-0.814075		
30	8	0	4.042254	0.530126	0.013065		
31	6	0	1.210300	-2.505889	-0.657573		
32	1	0	1.624007	-3.507060	-0.751863		
33	6	0	-0.173702	-2.462925	-0.708497		
34	16	0	-1.176209	-1.026651	-0.387933		
35	6	0	-2.199094	-3.327935	-0.928540		
36	6	0	-2.605691	-1.989638	-0.641735		
37	1	0	-2.921773	-4.117888	-1.111420		
38	6	0	-3.934489	-1.555453	-0.585900		
39	6	0	-4.428799	-0.280811	-0.333629		
40	6	0	-3.616265	0.849920	-0.074821		
41	7	0	-2.981542	1.801880	0.145044		
42	15	0	-6.190091	-0.032858	-0.313108		
43	8	0	-6.95/5/1	-1.285530	-0.512/96		
44	8	0	-0.399041	1.130023	-1.393812		
45	2	0	-6 546272	1.322224	-1.300039		
40	0	0	-0.540572	-2 222002	-0 767021		
	7	0	-0 914399	-3 580639	-0 962002		
49	6	n	-6.581572	0.026217	2,271062		
50	6	0	-6.872508	1.004559	3,386401		
51	1	0 0	-5.611444	-0.463465	2,415329		
52	- 1	0	-7.354173	-0.743937	2.194603		
53	1	0	-6.909169	0.475323	4.342061		
54	1	0	-6.092006	1.767697	3.439325		
55	1	0	-7.835341	1.494944	3.222256		

Pyt-PO(OEt)OH

Calculated Absorption Spectrum in DMF (CPCM-TD-M06-2x/6-311+G(2d,p)//CPCM-M06-2x/6-31G*):

No.	Energy (cm-1)	Wavelength (nm)	f	Major contribs
1	19519.55856	512.306667657	1.3148	HOMO->LUMO (97%)
2	29541.06656	338.511813028	0.2377	HOMO->L+1 (80%) H-1->LUMO (5%), HOMO->L+2 (7%)
3	32034.95008	312.159062993	0.3998	H-1->LUMO (12%), HOMO->L+1 (11%),HOMO->L+2 (64%) H-2->LUMO (6%)
4	33024.5992	302.804583318	0.664	H-1->LUMO (68%), HOMO->L+2 (14%), H-2->LUMO (3%), H-1->L+1 (4%), H-1->L+2 (4%)
5	36491.19408	274.038716795	0.1375	H-2->LUMO (78%), H-5->LUMO (6%),HOMO->L+2 (9%)
6	39071.37952	255.941820403	0.0822	H-7->LUMO (15%), H-4->LUMO (34%), H-4->L+1 (19%) H-3->LUMO (4%),H-1->L+1 (4%), H-1->L+4 (3%), HOMO->L+4 (3%), HOMO->L+5 (2%)

NMR spectra

¹³C NMR (APT) spectrum of compound pyt-COOH (100 MHz, dmso-d⁶)

¹H NMR spectrum of compound pyt-PO(OH)₂ (400 MHz, dmso-d⁶)

¹³C NMR (APT) spectrum of compound pyt-PO(OH)₂ (100 MHz, dmso-d⁶)

¹H NMR spectrum of compound pyt-PO(OEt)OH (400 MHz, dmso-d⁶)

¹³C NMR (APT) spectrum of compound pyt-PO(OEt)OH (100 MHz, dmso-d⁶)

Absorption and emission spectra in ^tBuOH:CH₃CN (1:1)

Absorption-Emission spectra 10⁻⁵M in ^tBuOH:CH₃CN (1:1) pyt-COOH

Absorption-Emission spectra 10⁻⁵M in ^tBuOH:CH₃CN (1:1) pyt-PO(OH)₂

Absorption-Emission spectra 10⁻⁵M in ^tBuOH:CH₃CN (1:1) pyt-PO(OEt)OH

Electrochemical characterization

Differential pulse voltammetry (DPV) pyt-COOH in DMF

Differential pulse voltammetry (DPV) pyt-PO(OH)₂ in DMF

Differential pulse voltammetry (DPV) pyt-PO(OEt)OH in DMF

Relative dye concentration on the TiO₂ surface

To estimate the dye surface concentration on TiO_2 surface, we prepared three identical mesoporous TiO_2 films (thickness of the TiO_2 films 3 µm, area 0.36 cm²) and about 0.1 mM dyeing solutions in 1:1 mixture of acetonitrile and *tert*-butyl alcohol of pyt-COOH and pyt-PO(OEt)OH. Then we measured the absorption of the dyeing solutions before and after soaking for 3 hours the TiO_2 films and made used of dye calibration curves (see next paragraph) to calculated the number of dye molecules left in solution and thus to estimate the relative dye concentration on TiO_2 . All the details of the calculation are reported in the table below. As discussed in the main text pyt-PO(OH)₂ is not stable in the dyeing solution, therefore we could not extract the relative dye concentration for this dye.

	pyt-C	ООН	pyt-PO(OEt)OH		
	before soaking	after soaking	before soaking	after soaking	
Absorption maximum	1.74	1.59	1.75	1.62	
Molarity (M)	1.02E-4	9.37E-5	9.87E-5	9.34E-5	
Moles in solution	3.56E-7	3.28E-7	3.45E-7	3.27E-7	
Moles adsorbed on TiO ₂ film	2.8E-8		1,9E	E-8	
Relative dye concentration on TiO ₂	1		0.7		

Dye solution calibration curves

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Device performance parameters collected over 6 months of experiments

Box plot of the device performance parameters extracted from the current voltage curves collected under AM 1.5 simulated sunlight of 100 mW cm⁻² equivalent solar irradiance, for over 40 devices prepared for each dye over a period of 6 months in several different experiments. We did plot the device performance parameters of all the devices in a single graph, which showed a relative narrow and a significant more spread data distribution for pyt-COOH and pyt-PO(OEt)OH respectively. The origin of such large data distribution is due to the fact that the device preparation procedure was constantly changed to optimize the performances. The best performance was achieved after tuning the concentration dying solution, the soaking time in the dying solution, the mesoporous TiO₂ thickness, the Spiro-OMeTAD concentration and additive composition. We kept track of all these change and we reported the optimized procedure in the Experimental section.