Supplementary Information

Why is the electroanalytical performance of carbon paste electrodes involving ionic liquid binder higher than paraffinic binders? a simulation investigation

Mohammad Hadi Ghatee^{*1}, Sedigheh Namvar¹, Amin Reza Zolghadr¹, Fatemeh Moosavi²

Tel: +98 711 613 7174, Fax: +98 711 228 6008, E-mail: ghatee@susc.ac.ir

¹Department of Chemistry, Shiraz University, Shiraz, 71946, Iran

²Department of Chemistry, Ferdowsi University of Mashhad, Mashhad 91779, Iran

Table S1. Atomic charges calculation by using the

GAUSSIAN 03 at the B3LYP/6-311G for [C₄mim]PF₆.

atom	charge	atom	charge
N ₁	-0.357	H ₂	0.203
C ₂	0.327	H_4	0.204
N ₃	-0.355	H₅	0.277
C_4	-0.019	H_6	0.225
C ₅	-0.017	H ₇	0.227
C ₆	-0.357	H_8	0.237
C ₇	-0.157	H ₉	0.182
C ₈	-0.399	H ₁₀	0.201
C ₉	-0.381	Р	2.554
C ₁₀	-0.569	F	-0.587

Table S2. Atomic charges calculations by using the

atom	charge	atom	charge
C _{P1}	-0.658	H ₁	0.137
C _{P2}	-0.217	H ₂	0.127
C _{P3}	-0.278	H₃	0.118
C _{P4}	-0.128	H_4	0.121
C _{P5}	-0.066	H₅	0.123
C _{P6}	-0.183	H_6	0.124
C _{P7}	-0.345	H ₇	0.125
C _{P8}	-0.322	H ₈	0.125
C _{P9}	-0.273	H ₉	0.124
C _{P10}	-0.164	H ₁₀	0.124

GAUSSIAN 03 at the B3LYP/6-311G for $C_{20}H_{42.}$

Table S3. The distance of closest approach (Å): $[C_4mim]PF_6$ intercalated between graphite charged plates.

atoms of	distance of closet approach			
ionic liquid	C_1	C_106	C_512	C_556
N ₁	4.85	5.55	5.95	6.25
C ₂	4.65	5.25	5.65	6.85
N ₃	4.55	5.45	4.85	7.45
C ₄	3.55	4.75	5.05	7.75
C ₅	3.95	4.45	5.65	6.85
C ₆	3.85	5.25	4.65	7.95
C ₇	6.35	5.05	6.85	5.25
C ₁₀	4.25	4.55	7.45	4.55
Р	4.45	4.55	4.75	6.05
F	3.25	3.55	3.45	5.05

Table S4. The distance of closest approach (Å): $n-C_{20}H_{42}$ atoms intercalated between graphite charged plates.

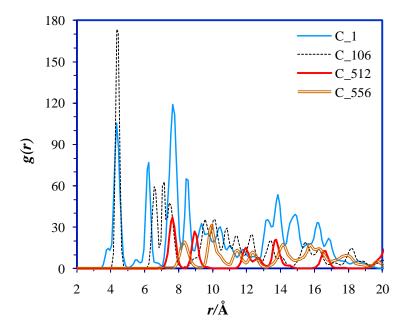
atoms of paraffin	distance of closest approach			
	C_1	C_106	C_512	C_556
C _{P1}	3.25	3.25	3.45	3.35
C _{P10}	3.55	3.55	3.65	3.75

IL atoms	graphite atoms			
	C_1	C_106	C_512	C_556
N ₁	4.35	6.35	6.75	5.75
C ₂	4.65	5.75	6.65	7.05
N ₃	5.35	4.55	7.05	7.55
C_4	5.45	4.35	6.25	8.05
C ₅	4.55	5.45	5.75	5.65
C ₆	4.75	3.75	7.55	8.05
C ₇	3.75	7.05	6.95	5.25
C ₁₀	3.45	8.35	6.45	3.75
Р	4.35	4.95	8.35	7.75
F	3.35	3.65	6.85	6.65

Table S5. The distance of closest approach (Å): $[C_4mim]PF_6$ placed on graphite uncharged plates.

Table S6. The distance of closest approach (Å): $[C_4mim]PF_6$ intercalated between graphite uncharged plates.

atoms of	distance of closet approach			
ionic liquid	C_1	C_106	C_512	C_556
N ₁	6.35	3.85	6.35	6.55
C ₂	6.85	4.25	6.75	6.35
N ₃	6.25	3.85	7.75	6.65
C_4	5.05	3.45	7.95	8.25
C ₅	5.05	3.45	7.95	8.25
C ₆	5.45	4.75	8.45	6.15
C ₇	5.35	4.75	5.05	5.65
C ₁₀	5.65	4.05	4.05	3.75
Р	4.55	5.25	5.85	5.85
F	3.25	4.05	4.65	4.45


Table S7. The distance of closest approach (Å): $n-C_{20}H_{42}$ placed on graphite uncharged plates.

atoms of paraffin	distance of closest approach			
	C_1	C_106	C_512	C_556
C _{P1}	3.35	3.45	3.55	3.55
C _{P10}	6.65	3.55	3.65	7.65

atoms of paraffin	distance of closest approach			
	C_1	C_106	C_512	C_556
C _{P1}	3.45	3.45	3.55	3.55
C _{P10}	3.55	3.55	3.25	3.55

Table S8. The distance of closest approach (Å): $n-C_{20}H_{42}$ atoms intercalated between graphite uncharged plates.

IL on Graphite Charged Plates: Figures <u>S1-S8</u>

Figure S1. Pair correlation functions (at 323 K) between C_2 atom of IL monolayer and carbon atoms at different locations on double- C_{600} graphite charged plates.

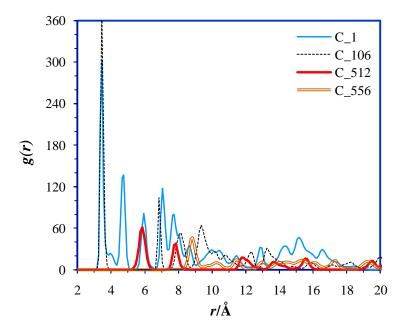


Figure S2. The same as Figure S1, but for C₄ atom.

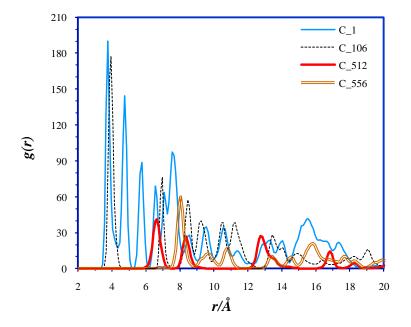


Figure S3. The same as Figure S1, but for C_5 atom.

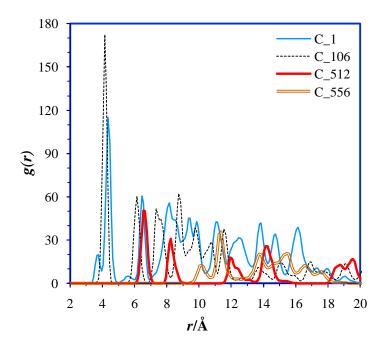


Figure S4. The same as Figure S1, but for C_6 atom.

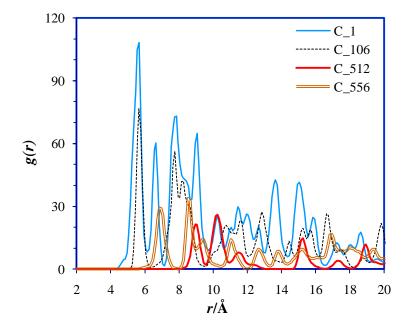
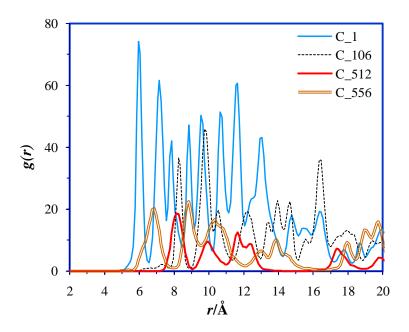



Figure S5. The same as Figure S1, but for C7 atom.

Figure S6. The same as Figure S1, but for C_{10} atom.

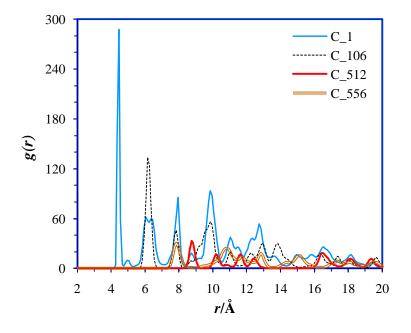


Figure S7. The same as Figure S1, but for P atom.

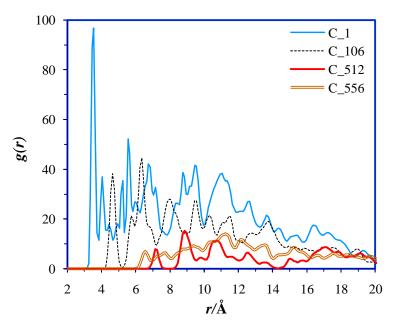
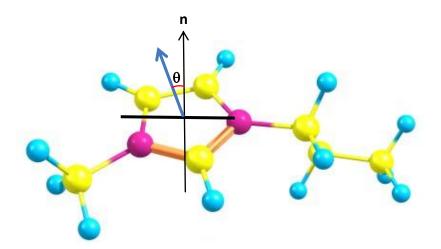
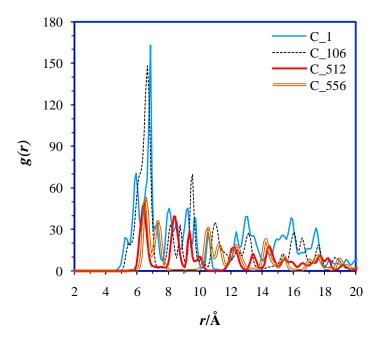




Figure S8. The same as Figure S1, but for F atom.

Figure S9. The average orientation of the imidazolium ring plane with to respect to graphite surface (of the double- C_{600}). (Θ) is the angle between normal of charged graphite plate (**n**) and normal of the imidazolium ring plane.

IL Intercalated between Graphite Charged Plates: Figures <u>S10-S19</u>

Figure S10. Pair correlation functions (at 323 K) between N_1 atom of IL monolayer and carbon atoms at different locations in between double- C_{600} graphite charged plates.

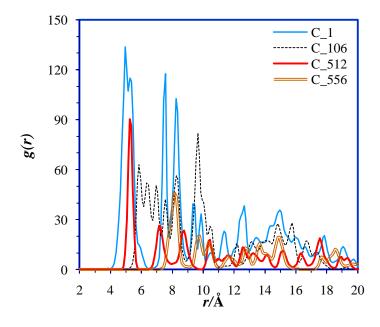


Figure S11. The same as Figure S10, but for N₃.

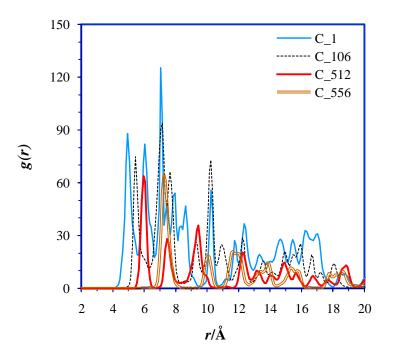


Figure S12. The same as Figure S10, but for C_2 .

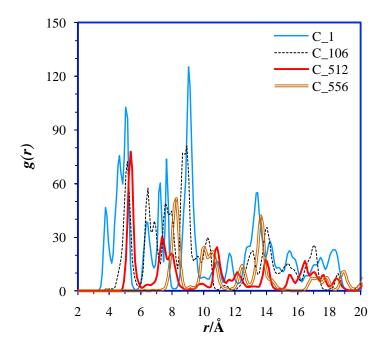


Figure S13. The same as Figure S10, but for C_4 .

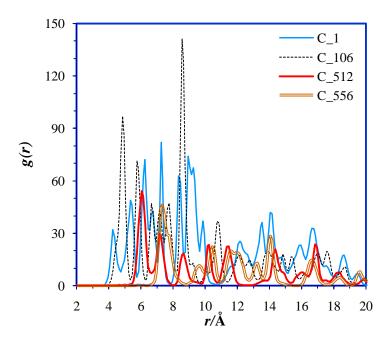


Figure S14. The same as Figure S10, but for C_5 .

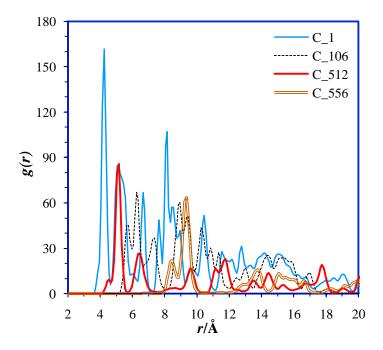


Figure S15. The same as Figure S10, but for C_6 .

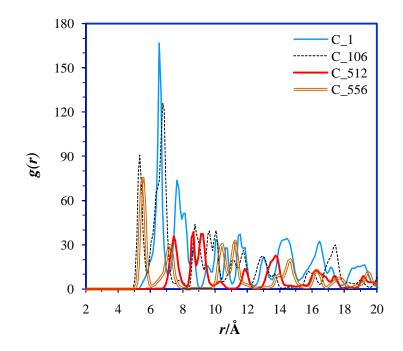


Figure S16. The same as Figure S10, but for C7.

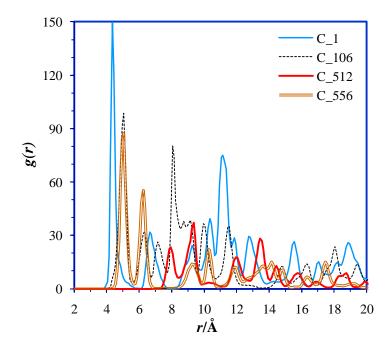


Figure S17. The same as Figure S10, but for C_{10} .

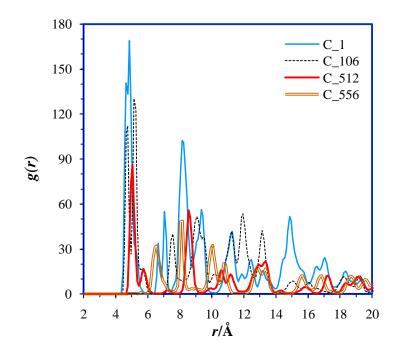


Figure S18. The same as Figure S10, but for P.

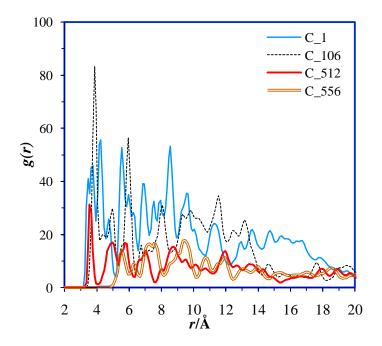
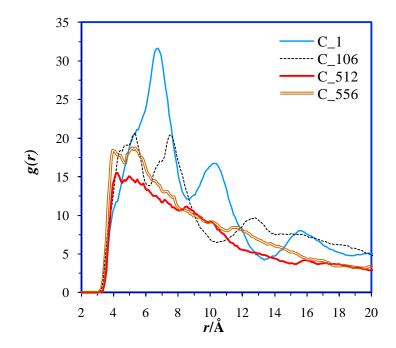



Figure S19. The same as Figure S10, but for F.

Paraffin Intercalated between Graphite Charged Plates: Figures <u>S20 and S21</u>

Figure S20. Pair correlation functions (at 323 K) between C_{P1} atom of paraffine and carbon atoms at different locations in between double- C_{600} graphite charged plates.

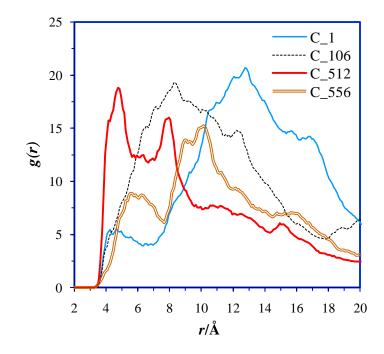
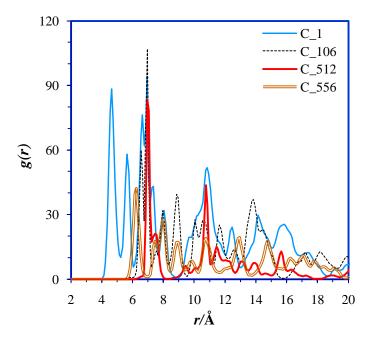



Figure S21. The same as Figure S20, but for C_{P10} .

IL on Graphite Uncharged Plates: Figures 22-31

Figure S22. Pair correlation functions (at 323 K) between N_1 atom of monolayer IL and carbon atoms at different locations on double- C_{600} graphite uncharged plates.

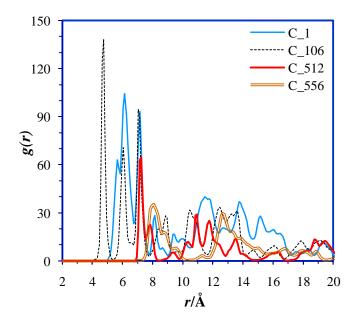


Figure S23. The same as Figure S22, but for N_3 .

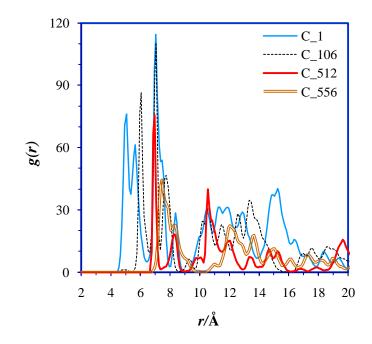


Figure S24. The same as Figure S22, but for C₂.

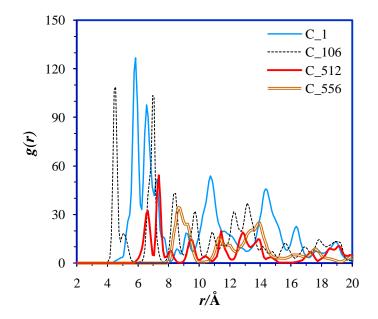


Figure S25. The same as Figure S22, but for C₄.

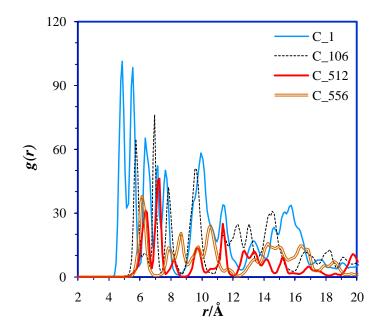


Figure S26. The same as Figure S22, but for C₅.

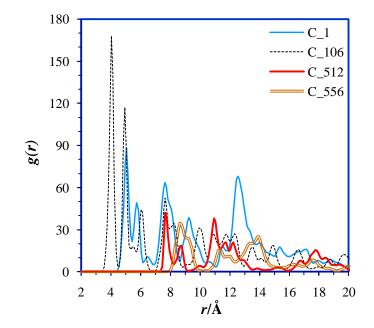


Figure S27. The same as Figure S22, but for C_6 .

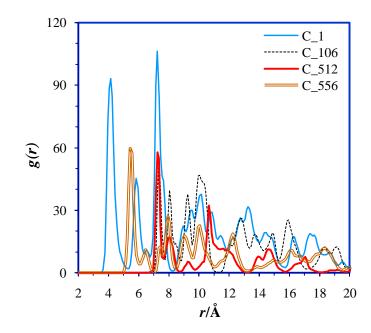


Figure S28. The same as Figure S22, but for C₇.

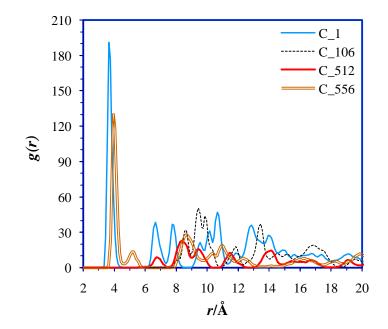


Figure S29. The same as Figure S22, but for C_{10} .

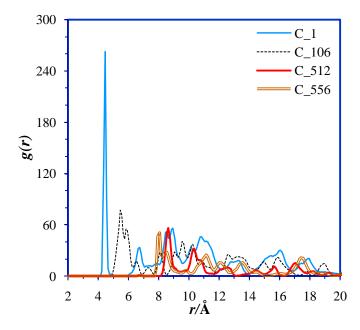


Figure S30. The same as Figure S22, but for P.

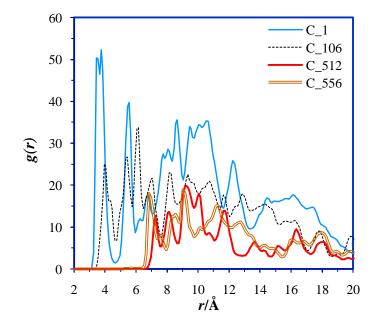
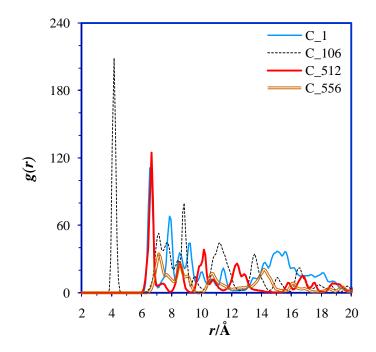



Figure S31. The same as Figure S22, but for F.

IL Intercalated between Graphite Uncharged Plates: Figures <u>S32-S41</u>

Figure S32. Pair correlation functions (at 323 K) between N_1 atom of monolayer IL and carbon atoms at different locations in between double- C_{600} graphite uncharged plates.

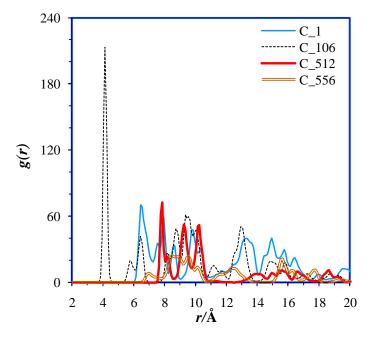


Figure S33. The same as Figure S32, but for N_3 .

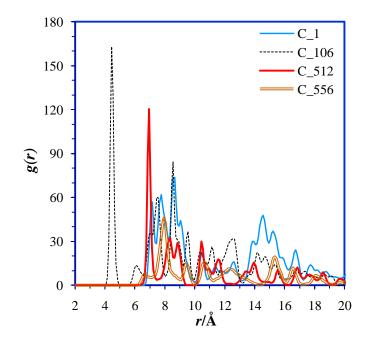


Figure S34. The same as Figure S32, but for C₂.

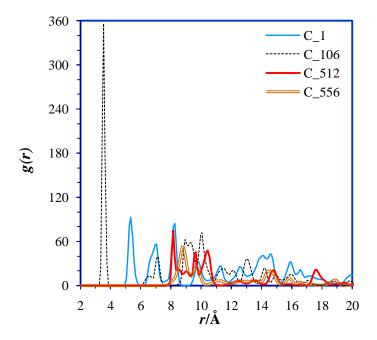


Figure S35. The same as Figure S32, but for C₄.

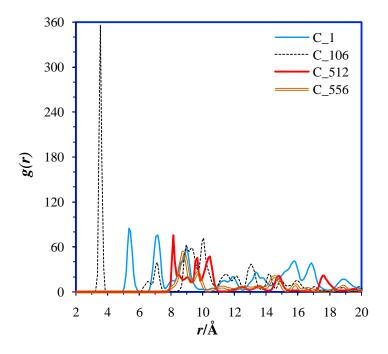


Figure S36. The same as Figure S32, but for C₅.

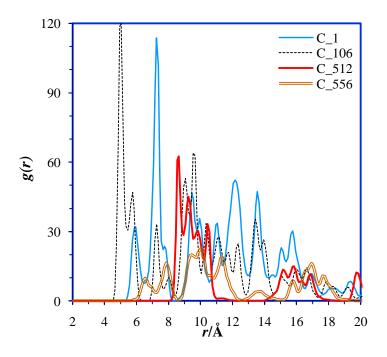


Figure S37. The same as Figure S32, but for C₆.

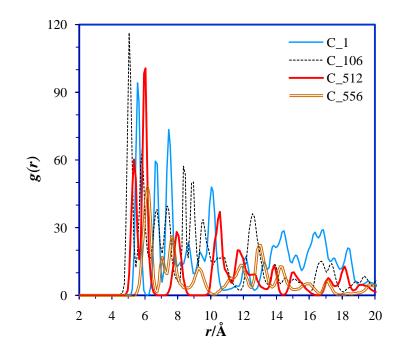


Figure S38. The same as Figure S32, but for C7.

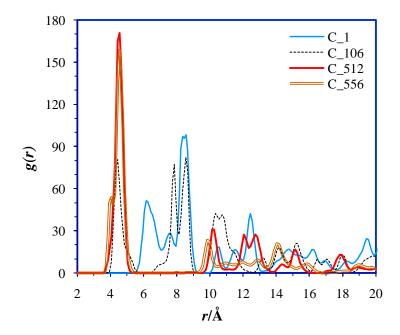


Figure S39. The same as Figure S32, but for C_{10} .

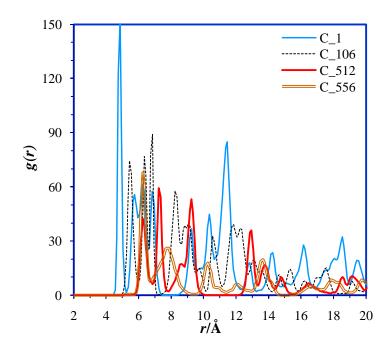


Figure S40. The same as Figure S32, but for P.

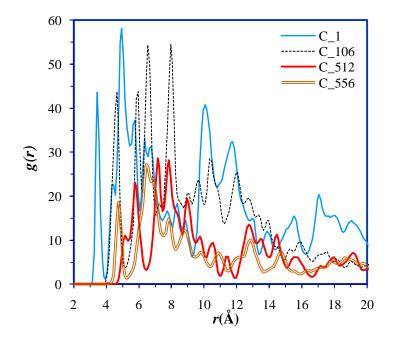
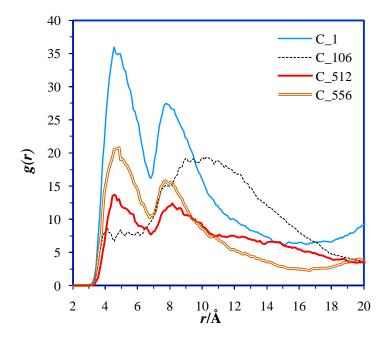



Figure S41. The same as Figure S32, but for F.

Paraffin on Graphite Uncharged Plates: Figures <u>42 and 43</u>

Figure S42. Pair correlation functions (at 323 K) between C_{P1} atom of monolayer IL and carbon atoms at different locations on double- C_{600} graphite uncharged plates.

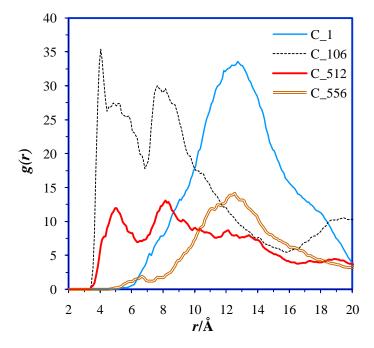
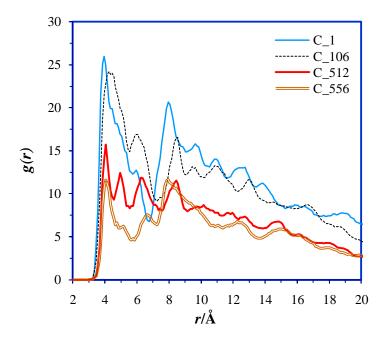
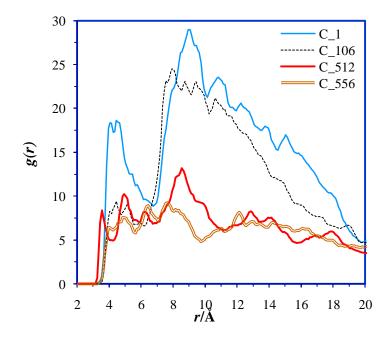




Figure S43. The same as Figure S42 but for $C_{\mbox{\scriptsize P10}}.$

Paraffin Intercalated between Graphite Uncharged Plates: Figures 44 and 45

Figure S44. Pair correlation functions (at 323 K) between C_{P1} atom of monolayer IL and carbon atoms at different locations in between double- C_{600} graphite uncharged plates.

Figure S45. The same as Figure S44 but for C_{P10} .