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Figure SI-1. The UV-vis absorption spectrum of the Au130 nanoclusters. 

Figure SI-2. MALDI mass spectra of Au130 nanoclusters. 

Figure SI-3. Cylic voltamgram of Durene-DT ligand at 10 mM concentration in CH2Cl2. 

Normal Pulse Voltammetry 

Estimation of the lifetime of the intermediate (+0.9 V). 

Figure SI-4. Chronoampermetry analysis of the Au130 nanoclusters with ligand oxidation (+1.6 V) and three 
reversal reduction process (-0.5, 0 and 0.7 V) at different time scale.  

Figure SI-5. Peak current analysis of the reversal reduction peaks at +0.9 and -0.5 V in CV at different scan rates 
(Data are from Figure 2). 

Figure SI-6. A: Absorption spectrum, B: cyclic voltammograms and C: the charge analysis of plasmonic Au-Durene-
DT nanoparticles. 

   

Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics.
This journal is © the Owner Societies 2015



Figure
584nm

 

e SI-1. UV-vis ab
m and 718nm ar

bsorption spectr
re characteristis 

rum of Au130 nan
 of the Au130 nan

 

noclusters in CH
noclusters as de

H2Cl2.  Four dis
escribed in our e

 

screte bands at 3
earlier report.   

355 nm, 490 nmm, 



 

Figure
Au130 
Au130(D
intensi
increas
(red lin
intensi

 

 

 

e SI-2: The MAL
sample was dis
Durene-DT)29(P
ity. The peak 
sed from top to
ne) developed a
ities in linear ne

LDI mass spect
ssoved in CH2C
ET)22  molecula
intensity decre

o bottom spectra
and further shi
egative mode. T

tra of Au130 nan
Cl2 and dropca
ar ion at 35313
ased and disap
a. Meanwhile, p
ifted to 29.4K. 
he m/z patterns

 

noclusters using 
asted by sandw
3 m/z (aligned 
ppeared due to
peaks at lower m
 Au-S fragment
s are consistent 

g DCTB as matr
wich method in
 with yellow lin
o fragmentation
m/z ranges, suc
ts at lower mas
 with the earlier

 

rix in linear po
n 1:100 (Au-MT
ne) was observe
n when the las
ch as thebroad p
ss range was ob
r reports of Au13

ositive mode. Th
TC:Matrix) rati
ed at lower las
ser intensity w
peak around 32
bserved at high

30 nanoclusters. 

he 
io. 
ser 

was 
2K 
her 
 



Figure
with 0

 

 

 

e SI-3. Cyclic vol
.1 M TBAP. A l

ltammogram of 
large irreversible

f durene-dithiol 
e oxidation peak

 

at 10 mM conc
k at 1.5 V corres

centration. The 
sponds to the o

 

scan rate is 0.1 
oxidation of the 

V/s in CH2Cl2 
 Durene-dithiol

 
.  



Normal Pulse Voltammetry (NPV) 

In NPV, the applied potential is stepped from an unchanged initial potential to sequentially-changed final 
potentials. The current difference under the two potentials at specific time scale is recorded as one data point at 
the stepped potential. The technique therefore allows us to maintain consistent initial conditions at the electrode 
surface to capture different decay or relaxation processes at a certain potential. 

 

Estimation of the lifetime of the intermediate (+0.9 V). 

From Figure 2A, the +0.9 V peak becomes distinguishable at a scan rate of 0.4 V/s. As the intermediate is 
produced immediately after the oxidation of the ligands at +1.34 V(facile ET process), and characterized by the 
reversal reduction peak at +0.9 V. The lifetime of the intermediate then would be equal to time duration between 
the two potentials. Noting the upper scan limit is 1.6 V for both forward and backward scans, at the scan rate of 
0.4 V/s, the duration time is then can be estimated as: 

t = ∆V2/v = (1.6 V‐0.9 V)/ 0.4 V/s =1.75 s. 
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