Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

SUPPLEMENTARY MATERIAL

Mass partitioning effects in diffusion transport

Milos Kojic^{1,2,3}, Miljan Milosevic², Suhong Wu,¹ Elvin Blanco¹, Mauro Ferrari¹, Arturas Ziemys^{1,*}

¹ - Houston Methodist Research Institute, Houston, TX 77030; ² - Belgrade Metropolitan University -Bioengineering Research and Development Center BioIRC Kragujevac, 34000 Kragujevac, Serbia; ³ – Serbian Academy of Sciences and Arts,11000 Belgrade, Serbia.

* The corresponding author: 6670 Bertner Ave., R7-116, Houston, TX 77030. Tel: (713) 441 7320. Email: aziemys@houstonmethodist.org

I. Nanoparticle characteristics

Full characterization of the polymer nanoparticles, including average size, size distribution, and zeta potential, can be found in the previously published work [1]. Briefly, resulting nanoparticles were monodisperse, averaging 105 nm in thickness with a shell approximating 40 nm. The average zeta potential of the nanoparticles was found to be approximately 25 mV.

II. General model.

III. Parameter space

Figure S2. Dependence of maximum released mass on partitioning at different concentrations of nanoparticles (*number in in the figure, units mL*⁻¹) in logarithmic scale.

References:

[1] G. U. Ruiz-Esparza, S. Wu, V. Segura-Ibarra, F. E. Cara, K. W. Evans, M. Milosevic, A. Ziemys, M. Kojic, F. Meric-Bernstam, and M. Ferrari, Adv. Funct. Mater. (2014).