Electronic Supplementary Information

Ab initio GGA+U Study of Oxygen Evolution and Oxygen Reduction Electrocatalysis on the (001) Surfaces of Lanthanum Transition Metal Perovskites LaBO₃ (B=Cr, Mn, Fe, Co and Ni)

Yueh-Lin LEE¹, Milind J. GADRE⁴, Yang SHAO-HORN^{*1,2,3}, Dane MORGAN^{4*}

¹Electrochemical Energy Laboratory, ²Department of Materials Science and Engineering,

³Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge,

Massachusetts 02139, United States

⁴Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison,

Wisconsin 53706, United States

Index	Page
Figure S1	2~3
Figure S2	4~5
Figure S3	6~7
Figure S4	8
Figure S5	9
Figure S6	10
Figure S7	11
Figure S8	12

Figure S1. Top panel - perovskite (001) BO₂ (green squares, same below) and AO (red triangles, same below) HO* surface adsorption energy, $\Delta E(HO^*)$, vs. surface coverage per (1×1) surface area for (a) LaCrO₃ (b) LaMnO₃ (c) LaFeO₃ (G-type AFM), (d) LaCoO₃ and (e) LaNiO₃. Second panel - perovskite (001) surface O* adsorption energy, $\Delta E(O^*)$, vs. surface coverage per (1×1) surface area for (f) LaCrO₃ (g) LaMnO₃ (h) LaFeO₃ (G-type AFM), (i) LaCoO₃ and (j) LaNiO₃. Third panel - perovskite (001) surface HOO* adsorption energy, $\Delta E(HOO^*)$, vs. surface coverage per (1×1) surface area for (k) LaCrO₃ (l) LaMnO₃ (m) LaFeO₃ (G-type AFM), (n) LaCoO₃ and (o) LaNiO₃. Bottom panel - perovskite (001) surface H* adsorption energy, $\Delta E(H^*)$, vs. surface coverage per (1×1) surface area for (p) LaCrO₃ (q) LaMnO₃ (r) LaFeO₃ (G-type AFM), (s) LaCoO₃ and (t) LaNiO₃. Note that some H* data is not included in the bottom panel as the low-coverage data already showed the H* was not stable on the surface and would therefore play no role in the surface coverage effects.

Figure S2. Top panel - perovskite (001) BO₂ (green squares, same below) and AO (red triangles, same below) HO* surface adsorption free energy per (1×1) surface area, $\Delta \overline{G}$ (HO*)× θ , vs. surface coverage per (1×1) surface area, $\Delta \overline{G}$ (HO*)× θ , vs. surface coverage per (1×1) surface area, $\Delta \overline{G}$ (HO*)× θ , vs. surface coverage per (1×1) surface area (a_p^2 , where a_p is the perovskite (001) surface plane lattice constant) at 0.83 V vs. RHE for (a) LaCrO₃ (b) LaMnO₃ (c) LaFeO₃ (G-type AFM), (d) LaCoO₃ and (e) LaNiO₃. Second panel - perovskite (001) surface O* adsorption free energy per (1×1) surface area, $\Delta \overline{G}$ (O*)× θ , vs. surface coverage per (1×1) surface area at 0.83 V vs. RHE for (f) LaCrO₃ (g) LaMnO₃ (h) LaFeO₃ (G-type AFM), (i) LaCoO₃ and (j) LaNiO₃. Third panel - perovskite (001) surface HOO* adsorption free energy per (1×1) surface area, $\Delta \overline{G}$ (HOO*)× θ , vs. surface coverage per (1×1) surface area, $\Delta \overline{G}$ (G-type AFM), (n) LaCoO₃ and (o) LaNiO₃. Bottom panel - perovskite (001) surface H* adsorption free energy per (1×1) surface area, $\Delta \overline{G}$ (H*)× θ , vs. surface coverage per (1×1) surface area at 0.83 V vs. RHE for (k) LaCrO₃ (l) LaMnO₃ (m) LaFeO₃ (G-type AFM), (n) LaCoO₃ and (o) LaNiO₃. Bottom panel - perovskite (001) surface H* adsorption free energy per (1×1) surface area, $\Delta \overline{G}$ (H*)× θ , vs. surface coverage per (1×1) surface area at 0.83 V vs. RHE for (p) LaCrO₃ (q) LaMnO₃ (r) LaFeO₃ (G-type AFM), (s) LaCoO₃ and (t) LaNiO₃. Note that some H* data is not included in the bottom panel as the low-coverage data already showed the H* was not stable on the surface and would therefore play no role in the surface coverage effects.

Figure S3. Top panel - perovskite (001) BO₂ (green squares, same below) and AO (red triangles, same below) HO* surface adsorption free energy per (1×1) surface area, *i.e.* surface adsorption free energy per adsorbate multiplied by surface coverage per (1×1) surface area, $\Delta^{\vec{G}}(HO^*)\times\theta$, vs. surface coverage per (1×1) surface area (a_p^2 , where a_p is the perovskite (001) surface plane lattice constant) at 1.63 V vs. RHE for (a) LaCrO₃ (b) LaMnO₃ (c) LaFeO₃ (G-type AFM), (d) LaCoO₃ and (e) LaNiO₃. Second panel – perovskite (001) surface O* adsorption free energy per (1×1) surface area, $\Delta^{\vec{G}}(O^*)\times\theta$, vs. surface coverage per (1×1) surface area at 1.63 V vs. RHE for (f) LaCrO₃ (g) LaMnO₃ (h) LaFeO₃ (G-type AFM), (i) LaCoO₃ and (j) LaNiO₃. Third panel - perovskite (001) surface HOO* adsorption free energy per (1×1) surface area, $\Delta^{\vec{G}}(O^*)\times\theta$, vs. surface area, $\Delta^{\vec{G}}(HOO^*)\times\theta$, vs. surface area, $\Delta^{\vec{G}}(O^*)\times\theta$, vs. surface area at 1.63 V vs. RHE for (k) LaCrO₃ (l) LaMnO₃ (m) LaFeO₃ (G-type AFM), (n) LaCoO₃ and (o) LaNiO₃. Bottom panel - perovskite (001) surface H* adsorption free energy per (1×1) surface area, $\Delta^{\vec{G}}(H^*)\times\theta$, vs. surface coverage per (1×1) surface area at 1.63 V vs. RHE for (p) LaCrO₃ (q) LaMnO₃ (r) LaFeO₃ (G-type AFM), (s) LaCoO₃ and (t) LaNiO₃. The free energy of H* adsorpt

LaCoO₃ (001) AO slab

Figure S4. (a) LaNiO₃ ideal (001) AO slab top surface layer oxygen project density of states (b) LaNiO₃ ideal (001) AO slab third layer oxygen project density of states (c) LaCoO₃ ideal (001) AO slab top surface layer oxygen project density of states and (d) LaCoO₃ ideal (001) AO slab third layer oxygen project density of states. The reference energy is aligned at the Fermi energy level. Schematics of the (001) AO slab layers are provided with dashed squares to show the indicated oxygens. The oxygen p_z states, which strongly hybridize with transition metal 3*d* states, are shown by the deep-color lines, while the oxygen $p_x + p_z$ states, which are less hybridized with the transition metal 3*d* states , are shown by the light-color lines. Arrows in the projected density of state plots represent transition metal 3*d*-oxygen p_z bonding (up-arrow) and anit-bonding (down-arrow) states.

Figure S5: Scaling relations for the binding energies of reactive intermediates of ORR and OER on (a) LaCrO₃ and (b) LaMnO₃ surfaces. Binding energies > 0 mean energy is gained in binding to the surface. Binding energies are for *OOH *(blue diamonds), *O (green triangles) and *OH (red squares) on y-axis, as a function of binding energy of *OH on the x-axis. (a) Binding energies of reactive intermediates of ORR and OER (*O, *OH, *OOH) for LaCrO₃ as a function of the *OH binding energy at 0V (RHE). Data points for HSE06 (blue squares) are referred from Wang *et al.*[1]. OH and OOH binding energies for a range of surfaces of (001)-BO₂ terminated LaCrO₃. (b) Binding energies of reactive intermediates of ORR and region denotes the set of different binding energies for HSE06 are referred from Wang et al.[1]. OH and OOH binding energies and OER (*O, *OH, *OOH) for LaMnO₃ as a function of the *OH binding energies of ORR and OER (*O, *OH, *OOH) for LaMnO₃ as a function of the *OH binding energies of ORR and OER (*O, *OH, *OOH) for LaMnO₃ as a function of the *OH binding energies of ORR and OER (*O, *OH, *OOH) for LaMnO₃ as a function of the *OH binding energies of of HSE06 are referred from Wang et al.[1]. OH and OOH binding energies approximately scale as $\Delta E(*OOH)=\Delta E(*OH)+3.52eV$. Shaded region denotes the set of of the *OH binding energies of ORR and OER (*O, *OH, *OOH) for LaMnO₃ as a function of the *OH binding energies of of a range of surfaces of (001)-BO₂ terminated LaCrO₃. (b) Binding energies approximately scale as $\Delta E(*OOH)=\Delta E(*OH)+3.40 eV$. Blue and red shaded regions denote the set of different binding energies for a range of surfaces of (011)-O-terminated and (001)-BO₂ terminated LaMnO₃. Binding energies are given for bare and covered surfaces.

Figure S6. The calculated $\Delta E(HO^*)$ vs the sub-surface layer O 2p band center relative to the Fermi level (the second slab layer beneath the surface termination) of LaCoO₃-FM (green symbols) and LaNiO₃-FM (blue symbols) (001) AO (empty circles) and BO₂ (filled diamonds) slabs. The dashed line represents the computed bulk LaCoO₃-FM and LaNiO₃-FM O-2p band centers taken from Ref.[2]. The figure demonstrates the opposite surface band bending between the (001) AO and BO₂ surfaces with respect to the bulk leads to the distinct surface $\Delta E(HO^*)$ adsorption energies.

Figure S7: A comparison of the HO* adsorption energy (eV/HO*) vs. SHE simulated at the low coverage limit (0.25ML) between the bare (in blue) and stable H* covered (in red) for LaMnO₃, LaFeO₃ (GAFM), LaCoO₃, and LaNiO₃ (001) BO₂ surfaces as well as LaNiO₃ (001) AO surfaces (labeled as LaNiO₃ (AO)). The H* covered surfaces were predicted to be the stable (001) BO₂ surfaces at applied potential of 0.83 V vs. RHE for LaMnO₃ (0.5 ML H*), LaFeO₃ (GAFM) (0.5 ML H*), LaCoO₃ (0.5 ML H*), LaNiO₃ (1ML H*) while the LaNiO₃ (001) AO surfaces was shown to be stable with 0.25 ML H* (see Table 2, Figure S2, and Figure 3).

Figure S8. GGA+U bulk stability calculations for LaNiO₃ relative to the reactions of forming Ruddelsden-Popper phase $La_{n+1}Ni_nO_{3n+1}$ (with NiO and O₂). Our results suggest the instability of LaNiO₃ under the ORR conditions (shaded area) to form the Ruddelsden-Popper phase.

References:

- 1. Wang, Y. and H.-P. Cheng, *Oxygen Reduction Activity on Perovskite Oxide Surfaces: A Comparative First-Principles Study of LaMnO3, LaFeO3, and LaCrO3.* The Journal of Physical Chemistry C, 2013. **117**(5): p. 2106-2112.
- 2. Lee, Y.-L., et al., *Prediction of solid oxide fuel cell cathode activity with first-principles descriptors*. Energy & Environmental Science, 2011. 4(10): p. 3966-3970.