Supplementary Information for

Porphyrin-based graphene oxide frameworks with ultra- large d-spacings for eletrocatalyzation of oxygen reduction reaction

Bowen Yao,^a Chun Li,^a Jun Ma,^b and Gaoquan Shi^{a,*}

^aDepartment of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China. Fax:
86 62771149; Tel: 86 6277 3743. E-mail: gshi@tsinghua.edu.cn
^bSchool of Engineering, University of South Australia, SA 5095, Australia

Table S1 Elemental atomic contents of GO, GO_{NH3} and P-GOF calculated from their XPS spectra								
Sample	C (%)	O (%)	N (%)	B (%)				
GO	65.2	33.5	0.92	0.35				
GO _{NH3}	67.9	27.9	3.86	0.31				
P-GOF	68.8	25.0	4.50	2.50				

 Table S2 The fitting results of the modified electrodes from EIS spectra with Randles equivalent circuits

Catalysts	R_{Ω}	R _{ct}	$CPE_1 (\mu F)$	p ₁	CPE ₂ (mF)	p ₂
P-GOF	15.90	305.1	9.4	0.862	0.520	0.387
P-rGOF	14.08	2.5	2043.0	0.477	2.860	0.190
Mn-GOF	14.53	218.0	9.3	0.858	0.459	0.338
Mn-rGOF	12.81	3.3	1960.0	0.439	2.570	0.818
Fe-GOF	14.26	229.2	7.1	0.872	0.419	0.366
Fe-rGOF	14.03	2.6	2247.0	0.461	2.570	0.827
Co-GOF	14.03	336.3	6.4	0.870	0.477	0.385
Co-rGOF	12.99	4.5	2582.0	0.741	1.450	0.530

Fig. S1 Mass spectra of (a) TBPP, (b) Co-TBPP, (c) Fe-TBPP and (d) Mn-TBPP.

Fig. S2 IR spectra of TBPP, Co-TBPP, Fe-TBPP and Mn-TBPP indicate that MnP, FeP and CoP were obtained as evidenced by the disappearance of N-H stretch vibration at around 966 cm⁻¹.

Fig. S3 RRDE measurement of Co-rGOF electrode in 0.1 M NaOH solution containing 10 mM K_3 Fe(CN)₆ at scan rate of 50 mv s⁻¹. Collection efficiency was calculated from the equation: $N=I_r/I_d$.

Fig. S4 SEM images of GO.

Fig. S5 SEM images of (a) P-GOF, (b) Co-GOF, (c) Fe-GOF and (d) Mn-GOF.

Fig. S6 IR spectra of Co- Fe- and Mn--GOFs

Fig. S7 N_2 adsorption and desorption of (a) GO, (b) P-GOF, (c) Co-GOF, (d) Mn-GOF, and (e) Fe-GOF.

Fig. S8 XPS survey scan spectra (a) and C1s spectra (b) of GO. XPS survey scan spectra (b), C1s spectra (c), N1s spectra (d) and B1s spectra (f) of GO_{NH3} .

Fig. S9 Nyquist plots of (a) Mn-GOF and (b) Mn-rGOF from 10^5 to 1 Hz at the open circuit potential (the red lines are fitting results).

Fig. S10 Nyquist plots of (a) Fe-GOF and (b) Fe-rGOF from 10^5 to 1 Hz at the open circuit potential (the red lines are fitting results).

Fig. S11 Nyquist plots of (a) Co-GOF and (b) Co-rGOF from 10^5 to 1 Hz at the open circuit potential (the red lines are fitting results).

Fig. S12 RDE measurements of ORR on (a) P-rGOF, (c) Fe-rGOF, (e) Mn-rGOF and (g)Pt/C modified glassy carbon electrode in oxygen-saturated 0.1 M KOH solution with rotating speeds varying from 400 to 2025 rpm at the at a scan rate of 10 mv s⁻¹ and the obtained K-L plots for (b) P-rGOF, (d) Fe-rGOF, (f) Mn-rGOF and (h) Pt/C, respectively.

Fig. S13 Plots of K-L equation derived electron transfer number versus potential on different modified electrodes.

Fig. S14 Peroxide percentages in the ORR products on P-rGOF, Co- rGOF, Fe- rGOF, Mn-rGOF and Pt/C electrodes.