Supporting materials for PCCP

Photochemistry of Nitrate Chemisorbed on Various Metal Oxide Surfaces

Daniel M. B. Lesko,^{*a*} Ellen M. Coddens,^{*b*} Hannah D. Swomley, ^{*a*} Rachel M. Welch,^{*b*} Jaya Borgatta,^{*a*} and Juan G. Navea^{*a*,*}

^aChemistry Department, Skidmore College, Saratoga Springs, NY, 12866-1632

^bChemistry Department, Lawrence University, Appleton, WI, 54911

* To whom correspondence should be addressed. Email: jnavea@skidmore.edu (J. Navea)

Product ratios on various metal oxide surfaces

In general, NOx is the primary product of the heterogeneous photolysis of HNO_3 on the metal oxide surfaces examined. Product ratios show that, for most surfaces, NO_2 is the major product early in the reaction and, along with NO, the major product of the entire heterogeneous photolysis. No quantifiable HONO was observed on SiO_2 .

Figure S1. Mole fractions for gas products produced from the heterogeneous photolysis of chemisobed nitrate on (A) TiO_2 , (B) ZnO, (C) Fe_2O_3 , (D) Al_2O_3 , and (E) SiO_2 . For clarity, only 16% of the data are plotted.