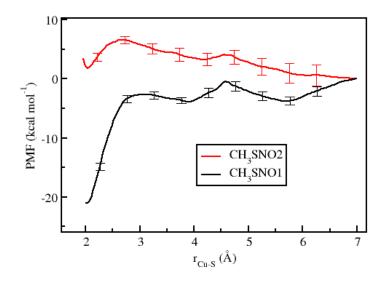
Supporting Information A computational study of the effect of the metal organic framework environment on the release of chemically stored nitric oxide

Tanping Li,^{1§} Kiara Taylor-Edinbyrd,^{1§} and Revati Kumar^{1,2*} ¹Dept. of Chemistry, Louisiana State University, Baton Rouge, LA 70803 ²Center for Computation and Technology, Louisiana State University, Baton Rouge, LA 70803


Table S1. Energies (relative to isomer III) and S-N distance of the various isomers, reactant and products (shown in Fig. 4 of the paper) at the B3LYP-D, M06, MP2 and CCSD(T) level of theory using a mixed basis set (LANLDZ for copper and 6-311G(d,p) for the other atoms). For the CCSD(T) energies, the CCSD optimized structures were used.

Cluster	CCSD(T)	MP2	B3LYP-D2 ΔE	Μ06 ΔΕ
	ΔE (kcal/mol)	ΔE (kcal/mol)	ΔE (kcal/mol)	$\Delta E(\text{kcal/mol})$
Reactant (I)	39.4	44.0	53.1	50.6
Product (II)	25.0	31.6	29.2	33.1
Isomer (III)	0.0	0.0	0.0	0.0
Isomer (IV)	7.2	11.6	9.7	9.2

Cluster	CCSD	MP2	B3LYP-	M06
	r _{S-N} (Å)	r _{S-N} (Å)	D2	r _{S-N} (Å)
			r _{S-N} (Å)	
Reactant (I)	1.83	1.84	1.90	1.85
Product (II)	N/A	N/A	N/A	N/A
Isomer (III)	2.12	2.26	2.22	2.18
Isomer (IV)	1.69	1.66	1.69	1.68

Additional canonical simulations (NVT ensemble) were performed at a temperature of 300 K using a Nose-Hoover thermostat for the CH₃SNO case.¹⁻³ The box length was 26 Å. All bond lengths were constrained using the LINCS algorithm,⁴ allowing a 2 fs time step in the simulation.

Figure S1. Free energy profiles of bringing CH₃SNO1 and the subsequently CH₃SNO2 to the same catalytic Cu(I) ion of MOF suspended in in ethanol solution in the NVT ensemble. Error bars were obtained by block averaging.

- 1. S. Nose, *Mol. Phys.*, 1984, **52**, 255-268.
- 2. S. Nose, J. Chem. Phys., 1984, **81**, 511-519.
- 3. W. G. Hoover, *Physical Review A*, 1985, **31**, 1695-1697.
- 4. B. Hess, H. Bekker, H. J. C. Berendsen and J. G. E. M. Fraaije, *J. Comput. Chem.*, 1997, **18**, 1463-1472.