Supplementary material

Electronic and optical properties of pristine and boron-nitrogen doped graphyne

nanotube

B. Bhattacharya, N. B. Singh, R. Mondal and U. Sarkar*

Department of Physics, Assam University, Silchar-788011, INDIA

FIG. S1: Geometrical structure of (2,0) zigzag graphyne nanotube: (a) pristine; (b) graphyne with BN at chain; (c) graphyne with BN at ring; (d) graphyne like BN tube

FIG. S2 A: PDOS analysis of zigzag GNT: (a) (2, 2); (b) (3,3); (c) (4,4); (d) (5,5).

FIG. S2 B: PDOS analysis of armchair GNT: (a) (2,0); (b) (3,0); (c) (4,0); (d) (5,0).

FIG. S2C: PDOS analysis of (2,0) GNT: (a) Pristine; (b) BN at chain; (c) BN at ring; (d) BNGNT

FIG. S3: PDOS analysis of pristine (2, 2) GNT in terms of the bond: (a) considering the bond parallel to the axis; (b) considering the bond at an angle to the axis.

FIG. S4: PDOS analysis of (2, 2) GNT with BN at chain, in terms of bond: (a) considering the bond parallel to the axis; (b) considering the bond at an angle to the axis.

FIG. S5: PDOS analysis of (2, 2) GNT with BN at ring, in terms of bond: (a) considering the bond parallel to the axis; (b) considering the bond at an angle to the axis.

FIG. S6: -COHP analysis of (2,2) GNT with BN at ring considering; (a) C-C; (b) B-C; (c) B-N; (b) C-N interactions.

FIG. S7: -COHP analysis of (2,2) BNNT considering; (a) B-N interaction at ring (b) B-N interaction for B-N connecting chain and ring,(c) B-N interaction at chain.

FIG. S8: Variation of first dominant peak of imaginary part of dielectric function (optical band gap) with increasing diameter: (a) pristine systems; (b) systems with BN at chain; (c) systems with BN at ring; (d) BN GNT of zigzag graphyne nanotube

FIG. S9: Variation of first dominant peak of imaginary part of dielectric function (optical band gap) with increasing diameter: (a) pristine systems; (b) systems with BN at chain; (c) systems with BN at ring; (d) BN GNT of armchair graphyne nanotube

FIG. S10: The imaginary part of dielectric function of zigzag graphyne nanotube: (a) (2, 2) GNT; (b) (3, 3) GNT; (c) (4, 4) GNT; (d) (5, 5) GNT; with the incident electric filed parallel and perpendicular to the plane are displayed

FIG. S11: The imaginary part of dielectric function of armchair graphyne nanotube: (a) (2,0) GNT; (b) (3,0) GNT; (c) (4,0) GNT; (d) (5,0) GNT; with the incident electric filed parallel and perpendicular to the plane are displayed

FIG. S12: Diameter dependence of absorption spectra of armchair graphyne nanotube: (a) when all four systems are pristine; (b) systems with BN at chain; (c) systems with BN at ring; (d) graphyne like BN tube

FIG. S13: Comparison of three modes of polarization of pristine (2,2) zigag graphyne nanotube: (a) average; (b) parallel polarization; (c) perpendicular polarization

FIG. S14: Comparison of absorption spectra considering three modes of polarization of: (a) (2,2) pristine graphyne nanotube; (b) (2,0) pristine graphyne nanotube

FIG. S15: Diameter dependence of optical conductivity of armchair graphyne nanotube: (a) when all four systems are pristine; (b) systems with BN at chain; (c) systems with BN at ring; (d) graphyne like BN tube

FIG. S16: Comparison of optical conductivity of considering three modes of polarization of: (a) (2,2) pristine graphyne nanotube; (b) (2,0) pristine graphyne nanotube

FIG. S17: Diameter dependence of reflectivity and refractive index of armchair graphyne nanotube: (a) when all four systems are pristine; (b) systems with BN at chain; (c) systems with BN at ring; (d) graphyne like BN tube

FIG. S18: Reflectivity and refractive index due to presence of BN at different site: (a) (2,2) pristine graphyne nanotube; (b) (2,0) pristine graphyne nanotube

FIG. S19: Diameter dependence of energy loss function $L(\omega)$ of armchair graphyne nanotubes: (a) pristine systems; (b) systems with BN at chain; (c) systems with BN at ring; (d) graphyne like BN nanotubes.

Systems		Band gap (eV)	Location of band gap	Nature of the semiconductor
	(2,2) GNT	0.68	X point	Direct
	(3,3) GNT	0.69	Gamma point	Direct
Pristine	(4,4) GNT	0.52	X point	Direct
	(5,5) GNT	0.53	Gamma point	Direct
	(2,2) GNT	1.65	X point	Direct
	(3,3) GNT	1.65	VBM →Gamma , CBM→ X	_ Indirect
GNT with BN at chain		1.67 (direct gap in Gamma)		
	(4,4) GNT	1.52	X point	Direct
	(5,5) GNT	1.56	VBM →Gamma , CBM→ X	Indirect
		1.57(direct gap in Gamma)		
	(2,2) GNT	2.56	VBM →Gamma , CBM→ X	Indirect
		2.58(direct gap in X)		
GNT with BN at ring	(3,3) GNT	2.57	VBM →Gamma , CBM→ X	_ Indirect
		2.59(direct gap in Gamma)		
	(4,4) GNT	2.54	VBM →Gamma , CBM→ X	 Indirect
		2.54(direct gap in X)		
	(5,5) GNT	2.53	Gamma point	_ Direct
	(2,2) GNT	4.08	VBM →Gamma , CBM→ X	Indirect
BNGNT		4.09(direct gap in X)		
	(3,3) GNT	4.15	VBM →Gamma , CBM→ X	Indirect
		4.17(direct gap in X)		
	(4,4) GNT	4.13	VBM →Gamma , CBM→ X	Indirect
		4.14(direct gap in X)		
	(5,5) GNT	4.14	VBM →Gamma , CBM→ X	Indirect
		4.14(direct gap in Gamma)		

TABLE. S1 : Magnitude of Band gap together with the Band gap location for zigzag GNT.

Systems		Band gap (eV)	Location of band gap	Nature of the
				semiconductor
	(2,0) GNT	1.08	X point	Direct
	(3,0) GNT	1.32	Gamma point	Direct
Pristine	(4,0) GNT	0.58	X point	Direct
	(5,0) GNT	0.78	Gamma point	Direct
	(2,0) GNT	2.38	X point	Direct
	(3,0) GNT	1.95	Gamma point	Direct
GNT with BN at chain	(4,0) GNT	1.67	VBM →X, CBM→ Gamma	 Indirect
		1.69 (direct gap in X)		
	(5,0) GNT	1.64	Gamma point	Direct
	(2,0) GNT	2.89	X point	Direct
	(3,0) GNT	2.77	Gamma point	Direct
GNT with BN at ring	(4,0) GNT	2.64	VBM \rightarrow X, CBM \rightarrow Gamma	Indirect
		2.64(direct gap in X)		
	(5,0) GNT	2.60	VBM →X, CBM → Gamma	 Indirect
		2.62(direct gap in X)		
	(2,0) GNT	4.21	X point	Direct
BNGNT	(3,0) GNT	4.35	X point	Direct
	(4,0) GNT	4.13	Gamma point	Direct
	(5,0) GNT	4.11	Gamma point	Direct

TABLE. S2 : Magnitude of Band gap together with the Band gap location for armchair GNT.

TABLE S3. The onset and maximum intensity with corresponding energy of E_2 spectra of pristine (armchair and zigzag) GNT in the energy range 0.00-2.00 eV.

Systems	Parallel polarization			Perpendicular polarization		
	Onset of E_2	Maximum Intensity	Corresponding energy (eV)	Onset of E_2	Maximum Intensity	Corresponding energy (eV)
(2,0) GNT	0.50	0.51	1.92	1.35	0.06	1.98
(2 <i>,</i> 2) GNT	0.23	1.42	1.23	0.65	0.77	1.92
(3 <i>,</i> 0) GNT	0.70	0.73	1.47	1.20	0.30	1.95
(3 <i>,</i> 3) GNT	0.40	1.52	1.23	0.8	0.67	1.50
(4 <i>,</i> 0) GNT	0.10	0.58	1.59	0.90	0.34	1.56
(4 <i>,</i> 4) GNT	0.10	1.41	1.17	0.30	0.70	1.50
(5 <i>,</i> 0) GNT	0.30	0.59	1.96	0. 50	0.38	1.32
(5,5) GNT	0.10	1.09	0.90	0.20	0.66	1.44

TABLE. S4: Location of first peak and strong peak of optical conductivity of armchair GNT with its BN derivatives

Systems	Location of First	Location of
Pristine	peak(eV)	strong peak (eV)
(2,0) GNT	1.29	16.19
(3,0) GNT	1.56	20.16
(4,0) GNT	0.72	20.18
(5,0) GNT	1.50	20.06
Systems with BN		
at chain		
(2,0) GNT	3.06	18.32
(3,0) GNT	2.37	19.73
(4,0) GNT	2.31	19.58
(5,0) GNT	2.10	19.47
Systems with BN		
at ring		
(2,0) GNT	4.67	15.65
(3,0) GNT	3.51	15.26
(4,0) GNT	3.51	19.43
(5,0) GNT	3.51	19.49
Graphyne like		
BN tube		
(2 <i>,</i> 0) GNT	5.84	18.26
(3,0) GNT	5.00	14.96
(4 <i>,</i> 0) GNT	4.94	14.96
(5,0) GNT	4.94	14.96

TABLE S5. Location of first peak and strong peak of optical conductivity of zigzag GNT with its BN derivatives

Systems	Location of First	Location of	
Pristine	peak(eV)	strong peak (eV)	
(2,2) GNT	1.38	19.74	
(3 <i>,</i> 3) GNT	1.5	20.07	
(4 <i>,</i> 4) GNT	1.38	21.75	
(5,5) GNT	1.44	23.73	
Systems with BN			
at chain			
(2 <i>,</i> 2) GNT	2.76	18.98	
(3,3) GNT	2.22	19.43	
(4 <i>,</i> 4) GNT	2.07	19.34	
(5,5) GNT	2.04	19.07	
Systems with BN			
at ring			
(2 <i>,</i> 2) GNT	2.97	22.67	
(3 <i>,</i> 3) GNT	2.85	19.55	
(4 <i>,</i> 4) GNT	2.79	19.46	
(5,5) GNT	2.76	19.37	
Graphyne like			
BN tube			
(2,2) GNT	5.52	18.26	
(3,3) GNT	4.44	18.08	
(4 <i>,</i> 4) GNT	4.35	18.02	
(5,5) GNT	4.32	18.06	