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Harmonic vibrational frequencies 

 Harmonic vibrational frequencies play a role in the RRKM model when calculating 

densities and numbers of states, as well as in the zero-point-energy isotope effect calculations 

to convert the acetone-d6 methyl-loss appearance energy to acetone-h6 methyl-loss 

appearance energy. The densities and numbers of states close to the dissociation threshold, i.e. 

at large internal energies, will be affected by anharmonic effects significantly, and, combined 

with the inherent assumptions of RRKM theory, we expect the ab initio results only to be a 

rough estimate, and the transitional modes, corresponding to bending and rotational motions 

in the transition state, can be scaled significantly. The methane-loss transition state geometry 

has been located using MP2 theory; all other geometries have been optimized using DFT with 

the B3LYP functional. The methyl-loss transition state geometry was optimized at an 

arbitrarily chosen R(C–C) = 3.25 Å bond length, at which the leaving methyl radical is almost 

planar already. The frequency analysis at this non-stationary geometry yielded one imaginary 

frequency corresponding to the reaction coordinate, ca. 40i cm–1 in both acetone-h6 and -d6. 

On the other hand, even though zero point energy scaling factors are not available for the 

exact methods used, they are typically on the order of 0.97 for similar levels of theory, i.e. 

very close to unity. Furthermore, ZPE scaling factors are typically evaluated for neutrals, and 

are hardly benchmarked for ions. In the ZPE isotope effect calculation, not scaling the 

frequencies adds a small, max. 1.5 meV uncertainty to the ZPE shift, and we feel that a 

marginal improvement in the accuracy does not justify adding a further step to the data 

analysis. Thus, the harmonic frequencies are not scaled in ZPE calculations. 
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Table S1. Ab initio harmonic frequencies in cm–1 used in the statistical model to calculate the 

thermal energy distribution of the neutral and the density of states of the parent ion. 
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Table S2. Vibrational frequencies in cm–1 used in the RRKM rate equation to calculate the 

number of states of the methyl and methane loss transition states. The lowest five frequencies, 

i.e. the transitional modes, have been scaled by the factor given in the last row. The same 

scaling factor has been applied to methyl loss from both actone-h6 and acetone-d6, which 

leads to no kinetic shift in these channels, in accordance with the experiment. The large 

amplitude motions in the parent ion are considered low frequency harmonic vibrations, which 

leads to an overestimated density of states of the parent ion at the dissociation threshold, 

tightening the transition state. To compensate for this, the transition state transitional 

frequencies have to be scaled with a rather low factor. The methane loss scaling factor is then 

determined based on the observed dissociation rates and ketene cation abundances, in the 

context of the tunneling parameters. 
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The contribution of tunneling 

 

Figure S1. Simulated breakdown diagram for acetone-h6 without tunneling effects. The light 

continuous lines correspond to the tunnelling model also shown in the main text. The dark 

continuous lines are a result of the same model but without tunnelling contributions. While 

the methyl loss breakdown curve is only slightly outside the experimental scatter, the 

CH2CO+ signal is only reproduced in the model, as constrained by the known thermochemical 

data, if tunnelling is included. The methane-loss channel is predominantly but not exclusively 

a result of quantum tunnelling in light acetone. 
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