Supporting Information

On the Formation of Pyridine in the Interstellar

Medium

Dorian S. N. Parker, Ralf. I. Kaiser, Oleg Kostko, Tyler P. Troy, Musahid Ahmed,

Bing-Jian Sun, Shih-Hua Chen, A. H. H. Chang

Figure S1. IRC calculations for bottom path of Figure 4.

tsi6i8

tsi11p2

Table S1. The product branching ratios of path1 and path2, which are obtained by employing RRKM rate constants computed with B3LYP/ cc-pVTZ zero-point energy corrected CCSD(T)/cc-pVTZ energies, and B3LYP/cc-pVTZ harmonic frequencies at collision energies of 0, 0.1, 0.6, 8.4, 12.5, 41.8, 83.7, 92.0, 104.6, and 125.5 kJ mol⁻¹. The collision energies correspond to average kinetic energy of an ideal gas molecule at 0, 10, 50, 671, 1000, 1678, 3356, 6712, 7383, 8390, and 10068 K, respectively.

	Branching Ratio (path 1)									
kJ /mol	0.0	0.1	0.6	8.4	12.5	41.8	83.7	92.0	104. 6	125.5
Produc	(0K 1	10 V	50 K	671	1000	3356	6712	7383	8390	1006
t		10 K		K	K	K	K	K	K	8 K)
P1	1	1	1	1	1	0.91	0.99	0.99	0.99	0.993
						1	6	5	4	
P2	0	0	0	0	0	0.00	0.00	0.00	0.00	0.007
						1	4	5	6	
Branching Ratio (path 2)										
kJ(mol	0.0	0.1	0.6	8.4	12.5	41.8	83.7	92.0	104.	125.5
									6	
Produc t	(0 K	10 K	50 K	671	1000	3356	6712	7383	8390	1006
				K	K	K	K	K	K	8 K)
p1	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.002
	0	0	0	0	0	0	0	0	1	
p2	0.27	0.27	0.26	0.19	0.16	0.09	0.06	0.06	0.06	0.056
	7	5	8	0	3	4	8	5	1	
P3	0.72	0.72	0.73	0.81	0.82	0.90	0.93	0.93	0.93	0.942
	3	5	2	0	7	6	2	5	8	