Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

Supplementory Information

The modulated structure and frequency upconversion properties of CaLa₂(MoO₄)₄:Ho³⁺/Yb³⁺ phosphors prepared by microwave synthesis

Chang Sung Lim¹, Aleksandr Aleksandrovsky^{2,3}, Maxim Molokeev^{4,5}, Aleksandr Oreshonkov^{3,6},

Victor Atuchin^{7,8,9*}

¹Department of Advanced Materials Science & Engineering, Hanseo University, Seosan 356-706,

Republic of Korea

²Laboratory of Coherent Optics, Kirensky Institute of Physics, SB RAS, Krasnoyarsk 660036,

Russia

³Department of Photonics and Laser Technologies, Siberian Federal University, Krasnoyarsk

660079, Russia

⁴Laboratory of Crystal Physics, Kirensky Institute of Physics, SB RAS, Krasnoyarsk 660036,

Russia

⁵Department of Physics, Far Eastern State Transport University, Khabarovsk 680021, Russia

⁶Laboratory of Molecular Spectroscopy, Kirensky Institute of Physics, SB RAS, Krasnoyarsk

660036, Russia

⁷Laboratory of Optical Materials and Structures, Institute of Semiconductor Physics, SB RAS,

Novosibirsk 630090, Russia

⁸Functional Electronics Laboratory, Tomsk State University, Tomsk 634050, Russia

⁹Laboratory of Semiconductor and Dielectric Materials, Novosibirsk State University, Novosibirsk

630090, Russia

	x	У	Ζ	$B_{ m iso}$	Occ.
		CaL	$a_2(MoO_4)_4$		
Ca	0	0.25	0.625	0.3 (3)	0.25
La	0	0.25	0.625	0.3 (3)	0.5
Mo	0	0.25	0.125	0.8 (3)	1
0	0.220 (4)	0.111 (3)	0.0443 (11)	1.2 (4)	1
		CaLa _{1.6} (MoC	0 ₄) ₄ :0.35Yb,0.05H	Но	
Ca	0	0.25	0.625	1.46 (18)	0.25
La	0	0.25	0.625	1.46 (18)	0.4
Yb	0	0.25	0.625	1.46 (18)	0.0875
Но	0	0.25	0.625	1.46 (18)	0.0125
Mo	0	0.25	0.125	1.13 (17)	1
0	0.237 (3)	0.102 (2)	0.0401 (8)	3.0 (4)	1
		CaLa _{1.55} (Mo	O ₄) ₄ :0.4Yb,0.05H	Ю	
Ca	0	0.25	0.625	1.0 (2)	0.25
La	0	0.25	0.625	1.0 (2)	0.3875
Yb	0	0.25	0.625	1.0 (2)	0.1
Но	0	0.25	0.625	1.0 (2)	0.0125
Мо	0	0.25	0.125	0.83 (18)	1
0	0.220 (3)	0.108 (2)	0.0465 (10)	1.4 (3)	1
		CaLa _{1.5} (MoC	0 ₄) ₄ :0.45Yb,0.05H	Но	
Ca	0	0.25	0.625	1.14 (19)	0.25
La	0	0.25	0.625	1.14 (19)	0.375
Yb	0	0.25	0.625	1.14 (19)	0.1125
Но	0	0.25	0.625	1.14 (19)	0.0125
Mo	0	0.25	0.125	1.25 (19)	1
0	0.225 (3)	0.110 (2)	0.0478 (10)	1.0 (3)	1
Ca	0	0.25	0.625	0.90 (19)	0.25
La	0	0.25	0.625	0.90 (19)	0.3625
Yb	0	0.25	0.625	0.90 (19)	0.125
Но	0	0.25	0.625	0.90 (19)	0.0125
Mo	0	0.25	0.125	0.88 (18)	1
0	0.228 (3)	0.108 (2)	0.0439 (10)	1.7 (4)	1

Table 1S. Fractional atomic coordinates and isotropic displacement parameters (Å²) of CaLa₂₋ $_x(MoO_4)_4$:Yb_y/Ho_z samples with average structure

CaLa ₂ (MoO ₄) ₄								
(Ca/La)—O ⁱ	2.618 (17)	Мо—О	1.687 (16)					
(Ca/La)—O ⁱⁱ	2.605 (15)							
CaLa _{1.6} (MoO ₄) ₄ :0.35Yb,0.05Ho								
(Ca/La/Yb/Ho)—O ⁱ	2.536 (14)	Мо—О	1.782 (13)					
(Ca/La/Yb/Ho)—O ⁱⁱ	2.511 (12)							
CaLa _{1.55} (MoO ₄) ₄ :0.4Yb,0.05Ho								
(Ca/La/Yb/Ho)—O ⁱ	2.579 (14)	Мо—О	1.666 (14)					
(Ca/La/Yb/Ho)—O ⁱⁱ	2.607 (13)							
CaLa _{1.5} (MoO ₄) ₄ :0.45Yb,0.05Ho								
(Ca/La/Yb/Ho)—O ⁱ	2.567 (14)	Мо—О	1.668 (13)					
(Ca/La/Yb/Ho)—O ⁱⁱ	2.602 (13)							
CaLa _{1.45} (MoO ₄) ₄ :0.5Yb,0.05Ho								
(Ca/La/Yb/Ho)—O ⁱ	2.566 (16)	Мо—О	1.709 (15)					
(Ca/La/Yb/Ho)—O ⁱⁱ	2.562 (14)							

Table 2S. Main bond lengths (Å) of CaLa_{2-x}(MoO₄)₄:Yb_y/Ho_z samples with average structure

Symmetry codes: (i) -x+1/2, -y, z+1/2; (ii) -x+1/2, -y+1/2, -z+1/2

Figure 1S. Difference Rietveld plot of $CaLa_2(MoO_4)_4$ without accounting of modulated superstructure peaks.

Figure 2S. Difference Rietveld plot of $CaLa_{1.6}(MoO_4)_4$:0.35Yb,0.05Ho without accounting of modulated superstructure peaks.

Figure 3S. Difference Rietveld plot of CaLa_{1.55}(MoO₄)₄:0.4Yb,0.05Ho without accounting of modulated superstructure peaks.

Figure 4S. Difference Rietveld plot of $CaLa_{1.5}(MoO_4)_4$:0.45Yb,0.05Ho without accounting of modulated superstructure peaks.

Figure 5S. Difference Rietveld plot of CaLa_{1.45}(MoO₄)₄:0.5Yb,0.05Ho without accounting of modulated superstructure peaks.

Fig. 6S. Raman spectrum of $CaLa_2(MoO_4)_4$ over the low wavenumber range.

Fig. 7S. Raman spectrum of CaLa₂(MoO₄)₄ over the high wavenumber range.

Fig. 8S. Emission spectra of $CaLa_{2-x}(MoO_4)_4$: Yb_y/Ho_z samples with the spectrum of undoped $CaLa_2(MoO_4)_4$ being extracted from all doped samples spectra. Reference spectrum of Ho ion luminescence in holmium aluminum borate (HoAl₃(BO₃)₄, [59]) is added for comparison.