Electronic Supplementary Information

Force field validation

To model the behavior of ionic liquids (IL) by molecular dynamics (MD) simulations, Canongia Lopes *et al.*^{1,2} built a non-polarizable all-atom force field from quantum mechanical calculations. This force field is able to describe a large set of IL compounds, but it generally fails to reproduce quantitatively their transport properties. In particular, it typically overestimates their viscosity by one order of magnitude³. As quantitative results were expected from the present study, we implemented a standard charge scaling procedure^{3,4} in order to properly reproduce the evolution of the density and of transport properties of the [mmlm⁺][NTf₂⁻] ionic liquid with the temperature. This modification was conducted following the method described by Chaban⁵.

Figure 1. Evolution of the bulk ionic liquid density with temperature, at ambient pressure *p* = 0.1 MPa. Symbols represent numerical values obtained for different weighting factors *k*

applied to the Coulombic charges in the force field parameterization. The dashed line represents experimental results^{5,6}.

For this purpose, we computed the $[mmlm^+][NTf_2^-]$ IL properties from MD simulations and compared them to experimental data. Fig.1 illustrates the variation of the IL density with temperature at ambient pressure p = 0.1 MPa, for both experimental data^{5,6} and MD simulations carried out with 3 different weighting factors: k = 0.70, 0.75 and 0.80. The relative deviation between the computed density values and the measured ones is less than 1 % over the studied temperature range when k = 0.75. It was thus considered, for this specific k value, that density and by extension the structural properties of the $[mmlm^+][NTf_2^-]$ ionic liquid were satisfactorily predicted.

Figure 2. Bulk diffusion coefficients of [mmIm+] cations (blue triangles) and [NTf₂-] anions (red squares) as a function of temperature, for a weighting factor k = 0.75 and at ambient pressure p = 0.1 MPa. Analytical laws determined empirically from experimental data⁷ are plotted for comparison.

As for dynamic properties, the diffusion coefficient was computed from the integration of the mean square displacement of the ions over time⁸. The weighting factor of 0.75 was used and

the results were compared with analytical predictions of empirical laws derived from experimental data⁷. Fig.2 shows the variation of the bulk diffusion coefficient of $[mmlm^+]$ cations and $[NTf_2]$ anions versus temperature, at ambient pressure p = 0.1 MPa. The agreement between the two set of results is fairly satisfying: the maximum relative deviations are of ca. 20 % for the cation and ca. 10 % for the anion at 333 and 393 K, respectively.

As a last step to confirm the *k* value of 0.75, the bulk shear viscosity at T = 303 K and p = 0.1 MPa was computed through equilibrium MD simulations using a Green-Kubo expression⁸, still with the same weighting factor applied to the ions charges. The resulting viscosity value was equal to 36 ± 5 mPa.s, to be compared with the experimental one of 32 mPa.s⁵, the relative deviation of 13 % being within the range of statistical errors. Finally, the choice of k = 0.75 appeared to be relevant to predict both density and transport properties of the [mmlm⁺][NTf₂]: this weighting factor has thus been adopted in this study.

Force Field configuration

 $E_{total} = E_{intermolecular} + E_{bonds} + E_{angles}$

 $E_{intermolecular}$

$$= \sum 4\epsilon_{ij} \left(\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right) + \frac{1}{4\pi\epsilon_0} \frac{q_i q_j}{r_{ij}}$$

For $r_{ij} < 12 \text{ Å}^{a}$ and using Lorentz-Berthelot mixing rules for Lennard Jones coefficients. Within molecules, intermolecular interactions are weighted with the following factors:

- 0 for 1-bond separated atom
- 0 for 2-bonds separated atom
- 0.5 for more than 3-bonds separated atom

$$E_{bonds} = \sum_{bonds} K_b(r)$$

$$E_{angles} = \sum_{angles} K_a(\theta)$$

$$E_{dihedrals} = \sum_{dihedrals} \frac{1}{2} V_1 [1 + \cos(\phi)] + \frac{1}{2} V_2 [1 - \cos(2\phi)] + \frac{1}{2} V_3 [1 + \cos(3\phi)]$$

Coefficients

Iron(II) oxide [FeO]

L J + Coulomb	Mass (g/mol)	σ_{ij} (Å)	ϵ_{ij} (kcal/mol)	q_i (e)
Fe	55.845	4.9059	9.0298E-06	2
0	15.999	3.166	0.1554	-2

^a Beyond 12 Å the Coulombic interactions are still effective but using a particle-particle particle-mesh solver⁹

1,3-dymethylimidazolium [mmIm⁺]

L J + Coulomb	Mass (g/mol)	σ_{ij} (Å)	ϵ_{ij} (kcal/mol)	q_i (e)
N _A	14.0067	3.25	0.17	0.1125
C _R	12.011	3.55	0.07	-0.0825
Cw	12.011	3.55	0.07	-0.0975
C ₁	12.011	3.5	0.065999	-0.1275
H _A	1.008	2.5	0.03	0.1575
H ₁	1.008	2.5	0.03	0.0975

Bonds	r_0 (Å)	K_b (kcal/mol)
C _R -N	1.315	477.0555
C _w -N	1.378	427.1033
C ₁ -N	1.466	336.9981
C _R -H	1.08	339.762926 ^b
C _w -H	1.08	339.762926 ^b
C _w -C _w	1.341	520.076481
C ₁ -H	1.09	339.762926

^b Coefficient values taken from the AMBER96 force field¹⁰

Angles	$ heta_0$ (°)	K_a (kcal/mol)
C _W -N-C _R	108	69.93308
C_R -N- C_1	126.4	69.93308
C_W -N- C_1	125.6	69.93308
N-C _R -N	109.8	69.93308
N-C _R -H	125.1	34.96653
N-C _w -H	122	34.96653
$N-C_W-C_W$	107.1	69.93308
C_W - C_W -H	130.9	34.96653
$N-C_1-H$	110.7	74.8566
H-C ₁ -H	107.8	65.98948

Dihedrals	V_1 (kcal/mol)	V_2 (kcal/mol)	V_3 (kcal/mol)
N-C _R -N-C _W	0	4.651	0
$H-C_R-N-C_1$	0	4.651	0
C_R -N- C_W - C_W	0	3	0
C_W -N- C_1 -H	0	3	0
C_{R} -N- C_{1} -H	0	0	0
$N-C_R-N-C_1$	0	4.651	0
$H-C_R-N-C_1$	0	4.651	0
C_1 -N- C_W - C_W	0	3	0
C_1 -N- C_W -H	0	3	0
C_W -N- C_1 -H	0	0	0.1314
N-C _w -C _w -N	0	10.75	0
N-C _w -C _w -H	0	10.75	0
H-C _w -C _w -H	0	10.75	0
Improper dihedrals	V_1 (kcal/mol)	V_2 (kcal/mol)	V_3 (kcal/mol)
N	0	2.0004	0
C _{R/W}	0	2.1988	0

Bis(trifluoromethylsulfonyl)imide [NTf2]

L J + Coulomb	Mass (g/	mol) σ_{ij}	(Å) ϵ_{ij} (k	cal/mol)	q_i
0	15.9994	2.96	5 0	.21	-0.39
S	32.065	3.55	5 0	.25	0.76
F	18.998	2.95	5 0.	053	-0.1
Ν	14.0067	3.25	5 0	.17	-0.4
С	12.0107	3.5	0.	066	0.26
	Bonds	r ₀ (Å)	K_h (kcal/r	nol)	
	O-S	1.442	637.054	5	
	N-S	1.57	372.003	5	
	S-C	1.818	235.41	5	
	C-F	1.323	441.791	.5	
_					
_	Angles	$ heta_0$ (°)	K_a (kca	l/mol)	
	0-S-0	118.5	115.7	955	
	O-S-N	113.6	94.23	855	
	O-S-C	102.6	103.9	965	
	N-S-C	100.2	97.5	12	
	S-N-S	125.6	80.13	845	
	S-C-F	111.8	82.9	33	
	F-C-F	107.1	93.32	295	
Dihed	rals V_1 (k	cal/mol) V	/ ₂ (kcal/mol)	V_3 (kcal/	mol)
0-S-N	N-S	0	0	-0.0035	85
O-S-0	C-F	0	4.651	0.3467	79
C-S-N	N-S 7.	83294	-2.49044	-0.763	62
N-S-C	C-F	0	0	0.3159	96

References

- (1) Canongia Lopes, J. N.; Pádua, A. A. H. Molecular Force Field for Ionic Liquids Composed of Triflate or Bistriflylimide Anions. *J. Phys. Chem. B* **2004**, *108*, 16893–16898.
- (2) Canongia Lopes, J. N.; Deschamps, J.; Pádua, A. A. H. Modeling Ionic Liquids Using a Systematic All-Atom Force Field. *J. Phys. Chem. B* **2004**, *108*, 2038–2047.
- (3) Salanne, M. Simulations of Room Temperature Ionic Liquids: From Polarizable to Coarse-Grained Force Fields. *Phys. Chem. Chem. Phys.* **2015**, *17*, 14270–14279.
- (4) Schroder, C. Comparing Reduced Partial Charge Models with Polarizable Simulations of Ionic Liquids. *Phys. Chem. Chem. Phys.* **2012**, *14*, 3089–3102.
- (5) Chaban, V. Polarizability versus Mobility: Atomistic Force Field for Ionic Liquids. *Phys. Chem. Chem. Phys.* **2011**, *13*, 16055–16062.
- (6) Krummen, M.; Wasserscheid, P.; Gmehling, J. Measurement of Activity Coefficients at Infinite Dilution in Ionic Liquids Using the Dilutor Technique. *J. Chem. Eng. Data* **2002**, *47*, 1411–1417.
- Tokuda, H.; Hayamizu, K.; Ishii, K.; Susan, M. A. B. H.; Watanabe, M. Physicochemical Properties and Structures of Room Temperature Ionic Liquids. 2. Variation of Alkyl Chain Length in Imidazolium Cation. *J. Phys. Chem. B* 2005, *109*, 6103–6110.
- (8) Allen, M. P.; Tildesley, D. J. Computer Simulation of Liquids; Oxford university press, 1989.
- (9) Hockney, R. W.; Eastwood, J. W. *Computer Simulation Using Particles*; CRC Press, 1988.
- Kollman, P. A. Advances and Continuing Challenges in Achieving Realistic and Predictive Simulations of the Properties of Organic and Biological Molecules. *Acc. Chem. Res.* 1996, *29*, 461–469.