1	Supporting Information: Ce K edge XAS of
2	ceria-based redox materials under realistic
3	conditions for the two-step solar thermochemical
4	dissociation of water and/or CO ₂
5	Matthäus Rothensteiner ^{*§} Simone Sala [*] Alexander Bonk [†]
6	Ulrich Vogt [†] Hermann Emerich [‡] Jeroen A. van Bokhoven ^{*§}
7	September 17, 2015

^{*}Paul Scherrer Institut 5232 Villigen PSI, Switzerland [†]EMPA Überlandstrasse 129 CH-8600 Dübendorf, Switzerland

[‡]ESRF, 71 Avenue des Martyrs, 38000 Grenoble, France [§]Institute for Chemical and Bioengineering ETH Zürich, Vladimir-Prelog-Weg 2, 8093 Zürich, Switzerland E-mail: jeroen.vanbokhoven@chem.ethz.ch

Figure 1: Normalised Ce L_{III} edge absorption spectra recorded during reduction of $Ce_{0.9}Hf_{0.1}O_{2-\delta}$ powder diluted with BN by heating with a rate of 50 Kmin⁻¹ from RT (a) to 1073 K (f,g,h) in a flow of helium. Kapton windows were used.

Figure 2: a) First derivative of cerium K edge spectra of $Ce_{0.9}Hf_{0.1}O_{2-\delta}$, recorded at 298, 1073, and 1773 K. 'Oxidised' (298 K) is the spectrum of the as-prepared pellet after introduction into the XAS cell. 'Oxidised' (1073) and 'oxidised' (1773) were recorded after oxidation in 1 atm CO₂. 'Reduced Ar' denotes spectra recorded after reducing the sample in a flow of argon at 1773 K and 'reduced H₂/He' spectra recorded after reducing the sample in a flow of 2% hydrogen/helium at 1773 K. b) Close-up of spectra recorded at 298 K. 'Oxidised' denotes the spectrum of the as-prepared pellet after introduction into the XAS cell. 'Reduced Ar' denotes spectra recorded after reducing the sample in a flow of argon at 1773 K and 'reduced H₂' spectra recorded after reducing the sample in a flow of argon at 1773 K and 'reduced H₂' spectra recorded after reducing the sample in a flow of argon at 1773 K and 'reduced H₂' spectra recorded after reducing the sample in a flow of argon at 1773 K and 'reduced H₂' spectra recorded after reducing the sample in a flow of argon at 1773 K and 'reduced H₂' spectra recorded after reducing the sample in a flow of argon at 1773 K and 'reduced H₂' spectra recorded after reducing the sample in a flow of argon at 1773 K and 'reduced H₂' spectra recorded after reducing the sample in a flow of argon at 1773 K and 'reduced H₂' spectra recorded after reducing the sample in a flow of argon at 1773 K and 'reduced H₂' spectra recorded after reducing the sample in a flow of argon at 1773 K and 'reduced H₂' spectra recorded after reducing the sample in a flow of argon at 1773 K and 'reduced H₂' spectra recorded after reducing the sample in a flow of argon at 1773 K and 'reduced H₂' spectra recorded after reducing the sample in a flow of argon at 1773 K.

Figure 3: (a) Cerium K edge X-ray absorption spectra, (b) after normalization and (c) difference spectra obtained by subtraction of a spectrum recorded at 1073 K after the first reduction by flushing the reactor with argon at 1773 K.

Figure 4: Extended X-ray absorption fine structure (EXAFS) of a) CeO₂ (as prepared) b) CeO_{1.93} (reduced Ar) c) Ce_{0.9}Hf_{0.1}O₂ (as prepared) d) Ce_{0.9}Hf_{0.1}O_{1.92} and e) Ce_{0.9}Hf_{0.1}O_{1.55} (reduced H₂) recorded at RT. The bold lines indicate the data range used for Fourier-transformation of $\chi(k)$ to obtain the pseudo-radial distribution functions $\chi(R)$.

8 1 Energy resolution

9 At 40 keV, the intrinsic energy resolution of parallel beams reflected on a Si (111) 10 monochromator crystal oriented orthogonally to the polarization plane reported by 11 Sanchez del Rio and Mathon¹ is $\Delta E = 0.135 \cdot 40 = 5.4$ eV. The angular range over 12 which total reflection occurs is described by the Darwin width ω_D of the crystal by the 13 dynamical theory of diffraction. The Darwin width is defined as the full width-at-half-14 maximum of the reflex of a divergent beam.

$$\omega_D = \frac{2\lambda^2 r_e C \sqrt{|\gamma|}}{\pi V} \frac{|F_{hkl}|}{sin 2\theta_B} \tag{1}$$

15 λ is the photon wavelength, r_e the classical electron radius, C the polarization factor, 16 γ the asymmetric ratio, V the volume of the crystal unit cell, and $|F_{hkl}|$ the structure 17 factor for the selected crystal reflection. For a polarized beam and symmetric Bragg 18 reflection, C and γ are equal to 1.

19 For Cu K_{α} radiation with $\lambda = 1.54$ Å, $\theta_B = 14.22^{\circ}$, $\omega_{D,Cu} = 3.4 \cdot 10^{-5}$ rad. At high 20 photon energies, the structure factor $|F_{111}|$ can be considered as weakly energy depen-21 dent, which extrapolates for $\omega_{D,40}$ to:

$$\omega_{D,40} = \omega_{D,Cu} \cdot \frac{\lambda_{40}^2}{\lambda_{Cu}^2} \frac{\sin 2\theta_{B,Cu}}{\sin 2\theta_{B,40}} = 6.6 \cdot 10^{-6} rad \tag{2}$$

A beam with 0.5 mm hight at the sample position located 40 m from the source 23 leads to a divergence $\psi = \frac{0.375mm}{30m} = 1.25 \cdot 10^{-5}$ rad at the monochromator, which is 24 located 30 meters away from the source. In the present case, the divergence ψ is thus 25 about two times as large as the Darwin width.

26 Considering the intrinsic resolution of the crystal a constant ΔE can be calculated 27 from equation 3: R_T is a measure for the efficiency of the reflection on two crystals and 28 defined as $R_T = R_1 R_2 p_0$, the product the ratios of the source and reflected bandwiths 29 R_1 and R_1 and a coefficient p_0 describing the peak value of the rocking curve.

$$R_T = 1 \cdot \left(\frac{\Delta E}{E}\right)_{intr} \cdot 10^3 \tag{3}$$

- 30 According to Table 1 in the work of Sanchez del Rio and Mathon¹ even at $\psi = 5\omega_D$
- 31 the value for R_T changes by less than 2%.
- 32 $\Delta E_1 = E \cdot R_T \cdot 10^{-3} = 40 \cdot 1346 \cdot 10^{-7} = 5.38 \text{ eV}$
- 33 $\Delta E_{\psi=5\omega_D} = E \cdot R_T \cdot 10^{-3} = 40 \cdot 1373 \cdot 10^{-7} = 5.49 \text{ eV}$
- 34 We can therefore conclude that at 40 keV the energy resolution ΔE of the Si (111)
- 35 double crystal monochromator with flat crystals is better or equal to 6.0 eV.

36 References

- 37 [1] M. Sanchez del Rio and O. Mathon, Adv. Comput. methods x-ray neutron Opt.,
- **38** 2004, **5536**, 157–164.