Electronic Supplemental Information for

"Adsorption of Guanidinium Collectors on Aluminosilicate Mineral–A Density Functional Study"

Naga Venkateswara Rao Nulakani^a, Prathab Baskar^b, Abhay Shankar Patra^b and Venkatesan Subramanian^{a*}

[†]Chemical Laboratory, CSIR-Central Leather Research Institute, Adyar, Chennai - 600 020, India.

*Research & Development, Tata Steel Limited, Jamshedpur 831 001, India.

Fig. S1. The AIM analisis for various cationic collectors on K (a) surface in gas phase. (a) GC (b) PGC (c) MPGC (d) NPGC and (e) DNPGC.

Fig. S2. The AIM plots of various cationic collectors on K (s) surface in gas phase. (a) GC (b) PGC (c) MPGC (d) NPGC and (e) DNPGC.

Fig. S3. The AIM plots of various cationic collectors on Goethite cluster in gas phase. (a) GC (b) PGC (c) MPGC (d) NPGC and (e) DNPGC.

Fig. S4. The binding energy plots of five different guanidinium based cationic collectors on K(a), K(s) and goethite in gas phase, explicit water model and pH model calculated using (a) 6-31G(d,p) and (b) 6-31G+(d,p) basis sets.

Fig. S5. The optimized geometries of four cationic coleectors (PGC, MPGC, NPGC and DNPGC) on three inorganic mineral surfaces in pH mode.