Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

Supporting Information for the article:

Tandem mass spectrometry and infrared spectroscopy as a help to identify peptide oxidized residues

D. Scuderi,*^a M. T. Ignasiak^{a, b}, X. Serfaty^a, P.de Oliveira^a and C. Houée Levin^a

Figure 1SI: CID-MS² fragmentation mass spectrum of (GS-Me)H⁺ (m/z 322).

Figure 2SI: CID-MS² fragmentation mass spectrum of GS-Me(O)H⁺ (m/z 338).

Figure 3SI: CID-MS² fragmentation mass spectrum of GS-Me(O)₂H⁺ (m/z 354).

Figure 4SI: CID-MS² fragmentation mass spectrum of (GS-Me)H⁺-CO₂ (m/z 278).

Figure 5 SI: CID-MS² fragmentation mass spectrum of (GS-Me)H⁺-H₂ (m/z 320).

Figure 6SI: Mass spectra of non-irradiated (a) and irradiated Trp-Met (b) (irradiation dose 800 Gy).

Figure 7SI: Mass spectra of non-irradiated (**a**) and irradiated Met-Trp (**b**) (irradiation dose 900 Gy).

Figure 8SI: CID-MS² fragmentation mass spectrum (Trp-Met)H⁺ (m/z 336).

Figure 9SI: CID-MS² fragmentation mass spectrum of (Trp-Met)O₂H⁺ (m/z 352).

Figure 10SI: CID-MS² fragmentation mass spectrum of (Met-Trp)H⁺ (m/z 336).

Figure 11SI: CID-MS² fragmentation mass spectrum of (Met-Trp)OH⁺ (m/z 352).

Figure 12SI: CID-MS² fragmentation mass spectrum of (Met-Trp)O₂H⁺ (m/z 368).

Figure 13SI: Mass spectrum of non-irradiated (a) and irradiated (b) Trp (irradiation dose 900 Gy).

•	
Compound	m/z, z=+1
(GS-Me)H ⁺ -CO ₂	278 (parent ion)
	261 (-NH ₃)
	193(y2)
	147 (y2-H ₂ O-CO)
	130 (y2-H ₂ O-CO-NH ₃)
(GS-Me)H ⁺ -H2	320 (parent ion)
	308 (-H ₂ O)
	191 (y2)
(GS-Me)H ⁺	322 (parent ion)
	247(b2)
	229 (b ₂ -H ₂ O)
	193(y2)
	176 (y2-NH ₃)
(GS-Me)OH⁺	130 (b1 ou y2-17-H ₂ O-CO)
	338(parent ion)
	320(-H ₂ O)
	274(-CH ₃ SHO)
	256(-H2O-CH ₃ SOH)
	209 (y2)
(GS-Me)O ₂ H ⁺	145 (y2-CH ₃ SOH)
	354 (parent ion)
	279 (b2)
	225 (y2)
	208 (y2- NH ₃)
	130 (b1)

Table 1SI. Most intense peaks in the CID-MS² fragmentation mass spectra of the products of GS-Me.

Table 2SI. Most intense peaks observed in the CID-MS² fragmentation mass spectra of the products of oxidation of Trp-Met.

Table 3SI. Most intense peaks observed in the CID-MS² fragmentation mass spectra of the products of oxidation of Met-Trp.

m/z, z=+1	compound
237	$(Trp)O_2H^+$
220	$(Trp)O_2H^+-NH_3$
219	$(Trp)O_2H^+-H_2O$
202	(Trp)O ₂ H ⁺ -NH ₃ -H ₂ O
192	(Trp)O ₂ H ⁺ -NH ₃ -CO
174	$(Trp)O_2H^+$ -NH ₃ -CO-H ₂ O

Table 4SI: Most intense peaks observed in the CID-MS² fragmentation mass spectrum of ions at m/z 237 and their attribution.

Scheme 1SI: Schematic representation of y2 fragments for each oxidation product of GS-Me according the Roepstorff-Fohlman nomenclature.

Scheme 2SI: Structures of 5hydroxytrypthophan (**a**) and oxindolylalanine (**b**) corresponding to the addition of an oxygen atom to the tryptophan.