Applied Dispersion Correction

We computed the dimer energies applied Grimme's dispersion corrections.⁴¹ Because we contrasted the energies of the dimer systems estimated almost equal magnitude of the dispersion forces in this paper, the dispersion interaction does not make a difference to the charge-recombination factors and the parameters for Marcus-Hush equation. However, the van der Waals interaction is important in the intermolecular interactions for large π -systems, we obtained the charge-recombination factors and the four-states energies with Grimme's dispersion correction as a function of the acceptor rotation angle or the donor rotation angle.

angle [°]	$\log_{10}(\Box \ [s^{-1}])$	(1)	(2)	(3)	(4)
A15	-4.13	-1698.33803	-1698.37914	-1698.32908	-1698.38889
A30	-0.30	-1698.34295	-1698.37973	-1698.33412	-1698.38972
A45	2.20	-1698.34591	-1698.37872	-1698.33766	-1698.38869
A60	0.33	-1698.34704	-1698.37967	-1698.33883	-1698.38939
A75	3.97	-1698.35233	-1698.38114	-1698.34578	-1698.39110