Supporting Information

Ni(OH)₂-modified Ti-doped α -Fe₂O₃ photoanode for improved photoelectrochemical oxidation of urea: the role of Ni(OH)₂ as a

cocatalyst

Dandan Xu,^a Zewen Fu,^a Dejun Wang,^{a, b} Yanhong Lin,^a Yanjun Sun,^a Dedong Meng,^a Teng feng Xie*^a.

a College of Chemistry, Jilin University, Changchun 130012, People's Republic of China. E-mail: xietf@jlu.edu.cn

b Department of Chemistry, Tsinghua University, Beijing 100084, People's Republic of China.

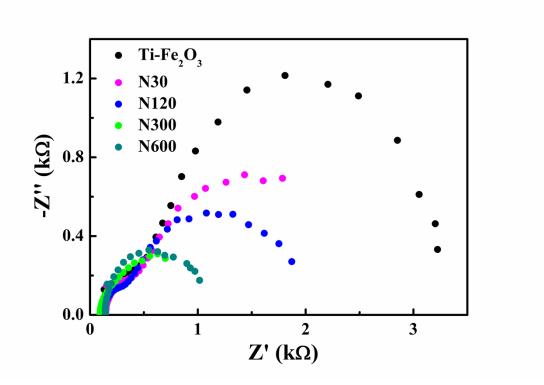


Fig. S1 Nyquist plots of PEIS measurements on $Ti-Fe_2O_3$ and $Ni(OH)_2/Ti-Fe_2O_3$ with different electrodeposition time . The electrolyte is 1 M KOH with 0.1 M urea and the intensity of light is 100 mW/cm².



Fig. S2 Accumulated charge density at different applied potentials of Ti-Fe₂O₃ and N300 in 1 M KOH and 1 M KOH with 0.1 M urea electrolytes under an illumination of 100 mW/ cm².



Fig. S3. Photoelectrodegradation efficiencies of Ti-Fe₂O₃ and Ni(OH)₂/Ti-Fe₂O₃ with different electro-deposition time under UV-light irradiation for 2 h (gray) and λ >400 nm irradiation 1h (magenta). We used a three electrode configuration with Ag/AgCl reference electrode, Pt wire counter electrode and the as-obtained films working electrode with an active area of 0.675 cm² in photoelectrodegradation measurements. The degradation solution volume is 9 mL with RhB (2.5 mg/L) and NaSO₄ (0.1 M) and the potential is 0.3 V vs. Ag/AgCl.