Preparation of size-selective Mn₃O₄ hexagonal nanoplates with

superior electrochemical properties for pseudocapacitors

Guiling Wang,^{ac} Zhipeng Ma,^{ac} Yuqian Fan,^{ac} Guangjie Shao,^{abc*} Lingxue Kong ^b and Weimin Gao^{b*}

Fig. S1 Cycling performance curves of the optimal sample with and without carbon fiber at 1 A g^{-1} . (without carbon fiber: the mass radio of active materials:acetylene black:PTFE=75:20:5)

Fig. S2 TGA curve of the hexagonal nanoplate precursor

Fig. S3 Typical TEM image of origanal $Mn(OH)_2$ nanosheets

Fig. S4 TEM images of as-synthesized precursors prepared (a) without glucose addition and (b) with 0.001 mol KOH addition, respectively.

Fig. S5 TEM image of the precursors prepared at glucose content of 0.0167 mol.

Fig. S6 Comparisons of the change in the specific capacitance at different (a)KOH and (b) glucose content.

Samples		S _{BET} (cm ² g ⁻¹)	V _t (cm ³ g ⁻¹)	C (F g ⁻¹)
1 (Mn ²⁺ :OH ⁻ =1:3)		114.799	0.271	84.412
2 (Mn ²⁺ :OH ⁻ =1:6)		89.33	0.284	191.769
3 (Mn²+:OH⁻=1:10)		38.7	0.245	295.41
4 (Mn²+:OH⁻=1:20)		34.125	0.111	210.772
5	(glucose	17.804	0.036	108.04
content=0.1g)				
6	(glucose	34.491	0.085	209.01
content=0.5g)				
7	(glucose	79.447	0.272	244.816
content=3.0g)				

Table S1 Comparisons of the change in the BET analysis at different KOH (Mn²⁺:OH⁻ =1:3, 1:6, 1:10, 1:20) and glucose content (0.1g, 0.5g, 3.0g)

Fig. S7 CV curves of the optimal sample at various rates after 5000^{th} cycles

Fig. S8 XPS spectra of the sample before and after cycling. (a) Mn 3s and (b) O 1s.

Fig. S9 Cyclic voltammograms of the Mn_3O_4 electrode with different potential ranges in a three-electrode system in 6 M KOH solution at a scan rate of 10 mV s⁻¹.

Fig. S10 Cyclic voltammorgrams of NC and Mn₃O₄ electrodes performed in a threeelectrode system in 6 M KOH solution at a scan rate of 10 mV s⁻¹.