Supporting Information to

Plasma Induced Tungsten Doping to TiO₂ Particles for Enhancement of Photocatalysis under Visible Light

Yohei Ishida^a, Yasutomo Motokane^a, Tomoharu Tokunaga^b, and Tetsu Yonezawa^{a,*}

^aDivision of Material Science and Engineering, Faculty of Engineering, Hokkaido University, Kita 13 Nishi 8, Kita-ku, Sapporo, Hokkaido 060-8628, Japan.
^bDepartment of Quantum Engineering, Graduate School of Engineering, Nagoya University, Furo-cho, Chikusa-ku, Aichi, Nagoya 464-8603, Japan

*Corresponding author E-mail address: tetsu@eng.hokudai.ac.jp

Sample preparation for ICP-AES (Thermo SCIENTIFIC, iCAP 6000)

100 mg of resultant TiO₂ nanoparticles was added in the 150 mL of PTFE beaker. Hydrogen peroxide (10 mL, Kanto) and nitric acid (2 mL, Kanto) were added, and heated at 120 °C for 3h. The solution was then cooled to room temperature. 8 mL of nitric acid and 2 mL of hydrofluoric acid (stella-chemifa) were added and heated at 120 °C. After the evaporation of solution until the 3 mL remained, the resultant solution was diluted with 10 mL of 2% nitric acid aqueous solution for ICP-AES measurement. Standard solutions of Ti and W (Wako, atomic absorption spectrometry reagent) were used for the calibration of the equipment.

Figure S1. Experimental setup of microwave-induced plasma.

Figure S2. Photographs of decahedral TiO_2 nanoparticles. From left: bare decahedral TiO_2 , after 40 min plasma treatment, and after alkaline treatment.

Figure S3. HAADF-STEM image and EDX mapping of plasma-treated decahedral TiO_2 nanoparticles before (a) and after (b) the alkaline treatment.

Figure S4. Diffuse reflectance spectra of plasma-treated TiO_2 nanoparticles for 200-2000 nm.

Figure S5. Absorption spectra of MB excited above 440 nm with time.