Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

Supporting Information Fluid phase interface properties of acetone, oxygen, nitrogen and their binary mixtures by molecular simulation

Stefan Eckelsbach and Jadran Vrabec*

Thermodynamics and Energy Technology, University of Paderborn, 33098 Paderborn, Germany. Fax: +49 5251 60 3522; Tel: +49 5251 60 2420; E-mail: jadran.vrabec@upb.de

Figure 1 Width of the interface over the reduced temperature TT_c^{-1} of acetone and nitrogen. The results for nitrogen are only given as comparison. \bigcirc acetone; \bigcirc nitrogen. The lines represent the empirical correlation $D = a(1 - T/T_c)^b + c(1 - T/T_c)^{-0.63}$ fitted to the data. For the determination of the critical temperatures, the parameters of the corresponding EOS were applied.^{2,3} The statistical uncertainties of the simulation data are considered as the standard error on a 95% confidence interval and are within the symbol size.

Table 1 Parameters of the force field models of acetone, ⁴ oxygen⁵ and nitrogen.⁵ The position of the interaction site is referred to as *x*, *y* and *z* with respect to the center of mass. The Lennard–Jones size and energy parameters σ and ε as well as the dipole and quadrupole moments μ and *Q* are given. Lennard–Jones interaction sites are denoted by the modeled atoms or atomic groups and electrostatic interaction sites are denoted by dipole or quadrupole, respectively. Orientations of the electrostatic sites are defined in standard Euler angles, where φ is the azimuthal angle with respect to the *x*–*z* plane and θ is the inclination angle with respect to the *z* axis

site	x	у	z	σ	$\epsilon/k_{ m B}$	θ	φ	μ	Q
	Å	Å	Å	Å	K	deg	deg	D	DÅ
	acetone								
С	0	0	0	2.9307	9.8216				
0	0	1.2095	0	3.3704	106.9873				
CH3	0	-0.8031	1.2853	3.6225	111.9795				
CH3	0	-0.8031	-1.2853	3.6225	111.9795				
dipole	0	0	0			90	90	3.4448	
quadrupole	0	-0.8031	0			90	90		0.7308
				oxyge	n				
0	0	0	-0.48495	3.1062	43.183				
0	0	0	0.48495	3.1062	43.183				
quadrupole	0	0	0			0	0		-0.8081
nitrogen									
N	0	0	-0.5232	3.3211	34.897				
Ν	0	0	0.5232	3.3211	34.897				
quadrupole	0	0	0			0	0		-1.4397

Table 2 The binary interaction parameter ξ_{AB} for oxygen + nitrogen, ⁶ oxygen + acetone⁴ and nitrogen + acetone.⁴ This parameter was used to modify the Lorentz–Berthelot combining rule to adjust the Lennard–Jones energy parameter $\varepsilon_{AB} = \xi_{AB}\sqrt{\varepsilon_A \varepsilon_B}$ between two unlike molecules *A* and *B* in preceding work to one experimental data point of vapor pressure or the Henry's law constant

molecule	ξ_{AB}	
A	В	
oxygen oxygen nitrogen	nitrogen acetone acetone	1.007 0.905 0.96

Table 3 Details of the initial simulation setup for the pure substances acetone, oxygen and nitrogen. The temperature *T*, the molar densities of the liquid and vapor bulk phase ρ_{l} and ρ_{v} , the number of molecules *N* as well as the dimensions of the simulation volume $l_{x/y}$ and l_{z} are given

Т	$ ho_{ m l}$	$ ho_{ m v}$	Ν	$l_{\rm x/y}$	$l_{\rm z}$		
K	$moll^{-1}$	$moll^{-1}$		nm	nm		
		acete	one				
250	14.41	0.00115	32 000	15.45	51.89		
270	14.04	0.00354	32 000	15.58	46.72		
300	13.47	0.0137	32 000	15.79	47.11		
350	12.46	0.0732	32 000	16.15	48.71		
400	11.29	0.255	32 000	16.51	49.73		
450	9.80	0.735	32 000	16.77	50.49		
		oxyg	gen				
60	40.06	0.00446	32 000	10.99	35.89		
80	37.20	0.0459	32 000	11.25	33.74		
100	34.09	0.326	32 000	11.52	34.76		
120	30.43	1.23	32 000	11.73	35.40		
140	25.42	3.65	32 000	11.76	35.46		
nitrogen							
70	29.93	0.0677	32 000	12.09	36.46		
80	28.34	0.217	32 000	12.27	37.03		
90	26.60	0.538	32 000	12.43	37.47		
100	24.61	1.14	32 000	12.55	37.85		
110	22.18	2.23	32 000	12.59	37.96		

Table 4 Details of the initial simulation setup for the mixture oxygen + nitrogen with an equimolar liquid bulk composition. The temperature *T*, the oxygen mole fraction of the vapor bulk phase y_{O2} , the molar densities of the liquid and vapor bulk phase ρ_{I} and ρ_{v} , the number of molecules *N* as well as the dimensions of the simulation volume $l_{x/y}$ and l_{z} are given

$\frac{T}{K}$	$\frac{y_{O2}}{\text{mol}\text{mol}^{-1}}$	$\frac{\rho_{\rm l}}{{\rm mol}{\rm l}^{-1}}$	$\frac{\rho_{\rm v}}{{\rm mol}l^{-1}}$	Ν	$\frac{l_{\rm x/y}}{\rm nm}$	lz nm
70	0.146	34.04	0.0405	32 000	11.59	34.97
80	0.191	32.54	0.134	32 000	11.74	35.51
90	0.235	30.94	0.337	32 000	11.89	35.89
100	0.278	29.20	0.712	32 000	12.02	36.25
110	0.318	27.25	1.35	32 000	12.11	36.52
120	0.358	24.93	2.42	32 000	12.13	36.59
130	0.401	21.87	4.31	32 000	12.03	36.30

Т	<i>x</i> _{O2}	УО2	$ ho_{ m l}$	$ ho_{ m v}$	N	$l_{\rm x/y}$	$l_{\rm z}$
K	$mol mol^{-1}$	$mol mol^{-1}$	$mol l^{-1}$	$mol l^{-1}$		nm	nm
400	0.00	0.000	11.29	0.255	32 000	16.51	49.73
400	0.05	0.813	11.44	1.73	32 000	15.28	46.03
400	0.10	0.882	11.71	3.21	32 000	14.31	43.13
400	0.15	0.892	12.01	4.83	32 000	13.48	40.65
400	0.20	0.905	12.25	6.15	32 000	12.94	39.01
400	0.24	0.899	12.52	7.40	32 000	12.48	37.65
400	0.26	0.901	12.60	7.78	32 000	12.36	37.27
450	0.00	0.000	9.80	0.735	32 000	16.77	50.49
450	0.04	0.471	9.70	1.58	32 000	16.05	48.35
450	0.05	0.508	9.87	1.88	32 000	15.74	47.42
450	0.10	0.648	9.89	2.75	32 000	15.11	45.54
450	0.15	0.697	9.94	3.71	32 000	14.52	43.76
450	0.20	0.733	9.96	4.41	48 000	14.14	63.85
450	0.24	0.757	10.11	5.08	48 000	13.79	62.25
450	0.26	0.771	9.99	4.92	48 000	13.89	62.70

Table 5 Details of the initial simulation setup for the mixture oxygen + acetone. The temperature *T*, the oxygen mole fraction of the liquid and vapor bulk phase x_{O2} and y_{O2} , the molar densities of the liquid and vapor bulk phase ρ_{I} and ρ_{v} , the number of molecules *N* as well as the dimensions of the simulation volume $l_{x/y}$ and l_{z} are given

Table 6 Details of the initial simulation setup for the mixture nitrogen + acetone. The temperature *T*, the nitrogen mole fraction of the liquid and vapor bulk phase x_{N2} and y_{N2} , the molar densities of the liquid and vapor bulk phase ρ_{I} and ρ_{v} , the number of molecules *N* as well as the dimensions of the simulation volume $l_{x/y}$ and l_{z} are given

T	<i>x</i> _{N2}	YN2	$ ho_1$	$ ho_{ m v}$	Ν	$l_{\rm x/y}$	lz
K	$mol mol^{-1}$	$\mathrm{mol}\mathrm{mol}^{-1}$	$mol l^{-1}$	$mol l^{-1}$		nm	nm
400	0.00	0.000	11.29	0.255	32 000	16.51	49.73
400	0.05	0.837	11.50	2.07	32 000	15.03	45.30
400	0.10	0.870	11.75	3.99	32 000	13.91	41.94
400	0.16	0.891	12.07	6.02	32 000	13.01	39.24
400	0.24	0.870	12.56	8.70	32 000	12.10	36.51
400	0.32	0.849	13.00	10.70	48 000	11.56	52.22
450	0.00	0.000	9.80	0.735	32 000	16.77	50.49
450	0.04	0.487	9.67	1.69	32 000	15.96	48.09
450	0.05	0.527	9.65	1.88	32 000	15.82	47.67
450	0.10	0.640	9.94	3.21	32 000	14.81	44.63
450	0.15	0.670	10.07	4.38	48 000	14.13	63.79
450	0.22	0.670	10.20	6.00	48 000	13.38	60.40
450	0.26	0.650	10.30	6.70	48 000	13.09	59.10

 Table 7
 Simulation results of acetone, oxygen and nitrogen for given temperature. The number in brackets indicates the standard error on a 95% confidence interval in the last digit

Т	$ ho_{ m l}$	$ ho_{ m v}$	D	γ				
K	moll ⁻¹	mol1 ⁻¹	nm	$\overline{mNm^{-1}}$				
		acetone						
250	14.478 (2)	0.0010(3)	0.57 (1)	32.1 (5)				
270	14.090(2)	0.0027(4)	0.63 (1)	29.5 (5)				
300	13.496(2)	0.019 (1)	0.76 (1)	24.7 (5)				
350	12.434(3)	0.084 (1)	1.000(7)	17.7 (4)				
400	11.206(8)	0.279 (3)	1.34 (1)	11.3 (4)				
450	9.65 (1)	0.834 (8)	2.08 (3)	5.0(3)				
	oxygen							
60	40.156(5)	0.0086(6)	0.348(6)	23.6(6)				
80	37.222(6)	0.044 (3)	0.511(6)	17.6(4)				
100	34.029(7)	0.349 (8)	0.722(8)	12.1 (3)				
120	30.35 (2)	1.24 (1)	1.07 (2)	7.0(3)				
140	25.46 (6)	3.63 (4)	1.86 (5)	2.6(2)				
nitrogen								
70	29.962(5)	0.067 (2)	0.602(7)	11.8(3)				
80	28.307 (6)	0.244 (3)	0.740(7)	9.1 (3)				
90	26.516(8)	0.57 (1)	0.92 (1)	6.9(2)				
100	24.51 (2)	1.19 (1)	1.18 (2)	4.5(2)				
110	22.13 (3)	2.30 (1)	1.65 (3)	2.5(2)				

References

- [1] J. Vrabec, G. K. Kedia, G. Fuchs and H. Hasse, Mol. Phys., 2006, 104, 1509–1527.
- [2] R. Span, E. W. Lemmon, R. T. Jacobsen, W. Wagner and A. Yokozeki, J. Phys. Chem. Ref. Data, 2000, 29, 1361–1433.
- [3] E. W. Lemmon and R. Span, J. Chem. Eng. Data, 2006, 51, 785–850.
- [4] T. Windmann, M. Linnemann and J. Vrabec, J. Chem. Eng. Data, 2014, 59, 28–38.
- [5] J. Vrabec, J. Stoll and H. Hasse, J. Phys. Chem. B, 2001, 105, 12126–12133.
- [6] J. Stoll, J. Vrabec and H. Hasse, AIChE J., 2003, 49, 2187–2198.