Grain-size Dependence of Mechanical Properties in Polycrystalline Boron-Nitride: A Computational Study

Matthew Becton and Xianqiao Wang*

College of Engineering and NanoSEC, University of Georgia, Athens, GA 30620 United States

Tersoff potential

The Tersoff potential used in this paper takes the form

$$E = \frac{1}{2} \sum_{i} \sum_{j \neq i} f_{C}(r_{ij}) [f_{R}(r_{ij}) + b_{ij}f_{A}(r_{ij})]$$

where f_R is a repulsive two-body term while f_A is an attractive three-body term managed by the b_{ij} bond function. The details of each component are

$$f_{C}(r) = \begin{cases} \frac{1}{2} - \frac{1}{2} \sin\left(\frac{\pi(r-R)}{2D}; R-D < r < R+D\right) \\ 0; r > R+D \end{cases}$$
(S1)

$$f_R(r) = A^{-\lambda_1 r}$$
(S2)

$$f_A(r) = -B^{-\lambda_2 r} \tag{S3}$$

$$b_{ij} = (1 + \beta^n \zeta_{ij}^{\ n})^{-\frac{1}{2n}}$$
(S4)

$$\zeta_{ij} = \sum_{k \neq i,j} f_{C}(r_{ik}) g(\theta_{ijk})^{\lambda_{3}^{m} (r_{ij} - r_{ik})^{m}}$$
(S5)

$$g(\theta) = \gamma_{ijk} \left(1 + \frac{c^2}{d^2} - \frac{c^2}{\left[d^2 + (\cos \theta - \cos \theta_0)^2 \right]} \right)$$
(S6)

Table S1: The Tersoff potential parameters used in the current work (from Matsunaga, Fisher;2000).

Elements	В	Ν
A (eV)	2.7702×10^{2}	1.1000×10^{4}
B (eV)	1.8349×10^{2}	2.1945×10^{2}
λ (Å ⁻¹)	1.9922	5.7708
μ (Å ⁻¹)	1.5856	2.5115
β	1.6000×10^{-6}	1.0562×10^{-1}
n	3.9929	12.4498
С	5.2629×10^{-1}	7.9934×10^{4}
d	1.5870×10^{-3}	1.3432×10^{2}
h	0.5000	-0.9973
<i>R</i> (Å)	1.8	2.0
<i>S</i> (Å)	2.1	2.3

Effects of pulling speed and grain orientation

Figure S1: Effects of pulling speeds on stress-strain relationship: (a) Pristine BN; (b) 4 nm grain PBN.

Figure S2: Effects of pulling speed on the mechanical properties of PBN with 4 nm sized grains: (a) Young's Modulus, (b) failure stress/strain, and (c) toughness.

Figure S3: Effect of grain orientations on stress-strain relationship of PBN with 4 nm sized grains. Here four different grain orientations are considered. A comparison of several differently oriented grain structures for 4 nm grain size PBN. Note the similarity for each.

Figure S4: A representation of the randomly oriented grains for 2 cases of 4 nm PBN (cases 'a' and 'b'), with only the atoms in the grain boundaries shown for clarity. The grains are given an orientation randomly chosen between 0° and 60° , as BN has hexagonal rotational symmetry. The first (bottom left) grain is always oriented in the 'armchair' direction (0°). In this case 30° would be the 'zigzag' direction.