Electronic Supplementary Information

Two equivalent methyl internal rotations in

2,5-dimethylthiophene investigated by microwave spectroscopy

Vinh Van^{*a}, Wolfgang Stahl^a, and Ha Vinh Lam Nguyen^b

^a Institute of Physical Chemistry, RWTH Aachen University, Landoltweg 2, D-52074 Aachen, Germany.

^b Laboratoire Interuniversitaire des Systèmes Atmosphériques (LISA), UMR 7583 (CNRS/ Univ. Paris Est & Paris Diderot), Université Paris Est, 61 avenue du Général de Gaulle, F-94010 Créteil cedex, France.

Corresponding author: Vinh Van

Phone: +49 241 80 94753

Email: vinh.van@rwth-aachen.de

Figure S-F1: The potential energy curves obtained by rotating one methyl group around the $C_{12}-C_{10}$ bond (for atom number see Figure 2). The dihedral angle $\varphi_1 = \angle(S_{15}, C_{12}, C_{10}, H_4)$ was varied in a step width of 1°. The basis set cc-pVTZ was used in combination with the MP2, B3LYP, and M06-2X methods. Relative energies are given with respect to the absolute minima of E = -630.646179 Hartree (MP2), -631.761983 Hartree (B3LYP), and -631.617104 Hartree (M06-2X).

Table S1: Fourier coefficients of the potential energy curves obtained by rotating one methyl group around the C_{12} - C_{10} bond (for atom number see Figure 2). The dihedral angle $\varphi_1 = \angle(S_{15}, C_{12}, C_{10}, H_4)$ was varied in a step width of 1°. Calculations were performed using different methods and the cc-pVTZ basis set (see Figure S-F1). The potential is expanded as

$$V(\varphi) = a_0 + \sum_{n=3}^{15} a_n \cos(n\varphi) + \sum_{n=3}^{9} b_n \sin(n\varphi)$$

	MP2/ cc-pV7	ΓZ	B3LYP/cc-p	VTZ	M06-2X/cc-p	VTZ
	Hartree	cm^{-1}	Hartree	cm ⁻¹	Hartree	cm^{-1}
a_0	-630.645711484		-631.761436484		-631.616516796	
a ₃	-0.000492240	-108.0	-0.000560540	-123.0	-0.000584515	-128.3
a_6	0.000022517	4.9	0.000010775	2.4	0.000012199	2.7
a ₉	0.000000942	0.2	0.000001992	0.4	-0.000004691	-1.0
a ₁₂	0.000000497	0.1	0.000000433	0.1	0.000000805	0.2
a ₁₅			0.000000981	0.2	0.000001996	0.4

b ₃	0.000003408	0.7	0.000004272	0.9	0.000004708	1.0
b_6	0.000001594	0.3	0.000000817	0.2	0.000000948	0.2
b ₉					-0.000000584	-0.1

Table S2: Cartesian nuclear coordinates of 2,5-dimethylthiophene calculated at the MP2/ cc-pVTZ level of theory. The atoms are numbered according to Figure 2.

	a /Å	b/Å	c /Å
H1	-3.310351	-0.650870	0.000219
H2	-2.959398	0.834773	-0.880626
H3	-2.959327	0.835141	0.880416
H4	3.310351	-0.650870	-0.000175
Н5	2.959385	0.834781	0.880652
H6	2.959341	0.835133	-0.880389
H7	-1.318693	-2.292040	-0.000001
H8	1.318692	-2.292040	-0.000015
C9	-2.697926	0.248923	0.000007
C10	2.697926	0.248923	0.000021
C11	-1.254300	-0.137267	0.000023
C12	1.254300	-0.137268	-0.000015
C13	-0.708113	-1.400395	-0.000003
C14	0.708112	-1.400395	-0.000010
S15	0.000000	1.047653	-0.000011

Figure S-F2: The potential energy surface of 2,5-dimethylthiophene calculated at the MP2/6–311++G(d,p) level of theory obtained by rotating the two methyl groups. No significant coupling was observed.

Figure S-F3: The potential energy surface of 2,5-dimethylthiophene calculated at the B3LYP/6-311++G(d,p) level of theory obtained by rotating the two methyl groups. No significant coupling between the torsional motions was observed.

Table S3: Coefficients of the two-dimensional Fourier expansion for the potential energy surface calculated at the MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) level of theory in a grid of 10° (Figure S-F2 and S-F3). Due to symmetry, only data points in the range from $\varphi_1 = 0^\circ$ to 120° and $\varphi_2 = 0^\circ$ to 120° are needed. The potential is expanded as $V(\varphi_1, \varphi_2) = \sum_{n=1}^{12} V_i f_i$.

		MP2/6-311++G(d.n)	B3LYP/6-311++G(d.n)
i		V_i /Hartree	V_i /Hartree
1	1	-630.445037756	-631.729233044
2	$\cos(3\varphi_1) + \sin(3\varphi_2)$	0.000006328	0.000005076
3	$\cos(3\varphi_1) + \cos(3\varphi_2)$	0.000538003	0.000620153
4	$\cos(6\varphi_1) + \sin(6\varphi_2)$	-0.000001196	-0.000001883
5	$\cos(6\varphi_1) + \cos(6\varphi_2)$	0.000054143	0.000015548
6	$\cos(3\varphi_1)\cos(3\varphi_2)$	-0.000010439	-0.000014867
7	$sin(3\varphi_1)sin(3\varphi_2)$	-0.000011985	0.000016431
8	$\cos(6\varphi_1)\cos(6\varphi_2)$	0.000002005	
9	$sin(6\varphi_1)sin(6\varphi_2)$	-0.000001900	0.00000231
10	$\cos(3\varphi_1)\sin(3\varphi_2) + \sin(3\varphi_1)\cos(3\varphi_2)$	2) 0.00000705	0.00000279
11	$\cos(6\varphi_1)\cos(3\varphi_2) + \cos(3\varphi_1)\cos(6\varphi_2)$	(p ₂) 0.000001777	
12	$\sin(6\varphi_1)\sin(3\varphi_2) + \sin(3\varphi_1)\sin(6\varphi_2)$) 0.000002986	

Figure S-F4: Schematic energy level diagram to illustrate the internal rotation splittings. Left-hand side: rigid molecule; middle: splittings to a (0) and an (1) species due to internal rotation of a methyl top; right-hand side: splittings to a (00), a doubly degenerated (01), an (11) and an (12) species due to the internal rotations of two equivalent methyl tops.

Table S4 (next page): The rotational constants *A*, *B*, and *C* in GHz, the deviations (Dev.) between the experimental and calculated rotational constants in MHz, the angles between the internal rotor axis and the principal axes of inertia $\angle(i,a)$, $\angle(i,b)$, $\angle(i,c)$ of the methyl group containing the C₁₀ atom, and the barrier to internal rotation V_3 of the two equivalent methyl groups calculated using various methods and basis sets. Additionally, harmonic frequency calculations were carried out to verify the nature of the stationary points.

Method/Basis set	A	Dev.	В	Dev.	С	Dev.	∠(i, <i>a</i>	∠(i, <i>b</i>	∠(i, <i>c</i>	<i>V</i> ₃ /cm ⁻¹
HF/6-31G(d,p)	5.024	-59	1.742	5	1.314	-1	14.89	75.11	90.00	382.5
HF/6-31+G(d,p)	5.019	-54	1.740	7	1.313	0	14.97	75.03	90.00	392.3
HF/6-31++G(d,p)	5.019	-54	1.740	7	1.313	0	14.97	75.03	90.00	393.5
HF/6-311G(d,p)	5.029	-64	1.743	4	1.315	-2	14.95	75.05	90.00	380.0
HF/6-311+G(d,p)	5.027	-62	1.742	5	1.314	-1	15.01	74.99	90.00	398.2
HF/6-311++G(d,p)	5.027	-62	1.742	5	1.314	-1	15.01	74.99	90.00	405.2
HF/6-311++G(3df,2pd)	5.077	-112	1.751	-4	1.323	-10	14.93	75.07	90.00	366.2
B3LYP/6-31G(d,p)	4.927	38	1.727	20	1.299	14	14.89	75.11	90.00	294.4
B3LYP/6-31+G(d,p)	4.920	44	1.725	22	1.298	16	14.96	75.04	90.00	292.9
B3LYP/6-31++G(d,p)	4.921	44	1.725	22	1.298	16	14.95	75.05	90.00	290.8
B3LYP/6-311G(d,p)	4.940	25	1.731	16	1.302	11	14.92	75.08	90.00	271.0
B3LYP/6-311+G(d,p)	4.940	25	1.730	17	1.302	11	14.98	75.02	90.00	275.4
B3LYP/6-311++G(d,p)	4.940	25	1.730	17	1.302	11	14.98	75.02	90.00	279.1
B3LYP/6-311++G(3df,2pd)	4.998	-33	1.741	6	1.312	1	14.88	75.12	90.00	230.7
B3LYP/cc-pVDZ	4.900	65	1.723	24	1.296	18	15.01	74.99	90.00	270.6
B3LYP/cc-pVTZ	4.979	-14	1.738	9	1.309	4	14.89	75.11	90.00	244.6
B3LYP/cc-pVQZ	4.991	-26	1.741	6	1.311	2	14.90	75.10	90.00	237.7
M06-2X/6-31G(d,p)	4.967	-2	1.745	1	1.313	1	15.06	74.94	90.00	298.8
M06-2X/6-31+G(d,p)	4.961	4	1.744	3	1.311	2	15.13	74.87	89.99	296.1
M06-2X/6-31++G(d,p)	4.962	3	1.744	3	1.311	2	15.12	74.88	89.99	295.2
M06-2X/6-311G(d,p)	4.977	-12	1.748	-1	1.315	-2	15.09	74.91	90.00	282.6
M06-2X/6-311+G(d,p)	4.977	-12	1.747	0	1.314	-1	15.16	74.84	90.00	290.5
M06-2X/6-311++G(d,p)	4.977	-12	1.747	0	1.314	-1	15.16	74.84	90.00	295.2
M06-2X/6-311++G(3df,2pd)	5.027	-62	1.756	-10	1.323	-10	15.09	74.91	90.00	255.2
M06-2X/cc-pVDZ	4.946	19	1.742	5	1.310	4	15.18	74.82	90.00	281.8
M06-2X/cc-pVTZ	5.014	-49	1.754	-7	1.321	-8	15.07	74.93	90.00	261.6
M06-2X/cc-pVQZ	5.026	-61	1.757	-10	1.323	-10	15.09	74.91	89.99	253.6
MP2/6-31G(d,p)	4.952	13	1.746	1	1.312	1	14.72	75.28	90.00	247.4
MP2/6-31+G(d,p)	4.941	24	1.744	3	1.310	4	14.85	75.18	89.17	
MP2/6-31++G(d,p)	4.941	24	1.744	3	1.310	4	14.87	75.16	89.06	
MP2/6-311G(d,p)	4.943	22	1.745	2	1.311	3	14.82	75.18	90.00	248.4

Experiment	4.965		1.747		1.313		14.59	75.41	90.0	248.0
CCSD(T)/cc-pVTZ ^b	4.980	-15	1.752	-5	1.317	-4	14.98	75.02	90.00	275.0
CCSD/cc-pVDZ	4.858	107	1.719	28	1.290	23	15.07	74.93	90.00	
CCSD/6-311++G(d,p)	4.924	41	1.733	14	1.303	10	14.97	75.03	90.00	
MP2/cc-pVQZ	5.006	-41	1.758	-11	1.322	-9	15.03	74.97	90.00	
MP2/cc-pVTZ	4.980	-15	1.752	-5	1.317	-4	14.98	75.02	90.00	215.5
MP2/cc-pVDZ	4.877	88	1.728	19	1.297	17	15.03	74.97	90.00	245.2
MP2/6-311++G(d,p) ^a	4.941	24	1.742	4	1.309	4	14.90	75.10	89.96	241.2
MP2/6-311+G(d,p)	4.941	24	1.743	4	1.309	4	14.86	75.14	90.00	238.9

^a One imaginary frequency was obtained for the minimum structure (see text) ^b Single point calculations using the optimized structures calculated at the MP2/cc-pVTZ level.

J K _a K _c J K _a I		Kc		V _{Obs.}	$v_{Obs} - v_{Cale}$			
up	per le	evel	lov	ver le	evel		GHz	kHz
2	2	1	2	1	2	(00)	10.9765365	-2.3
						(01)	10.7878122	6.4
						(12)	10.5955690	-1.8
						(11)	10.9440246	-0.5
3	1	3	2	0	2	(00)	11.3387590	1.4
						(01)	11.3295459	0.5
						(12)	11.3126677	0.3
						(11)	11.3281475	-0.1
3	2	1	3	1	2	(00)	9.2541060	0.6
						(01)	9.3559650	4.1
						(12)	9.5148455	0.9
						(11)	9.2224300	0.0
3	2	2	2	1	1	(00)	18.8568018	-6.8
						(01)	18.7112833	1.6
						(12)	18.4867022	-0.3
						(11)	18.8240931	0.2
3	2	2	3	1	3	(00)	11.6513380	2.3
						(01)	11.5173545	3.2
						(12)	11.3265087	-1.3
						(11)	11.6187890	-0.4
4	0	4	3	1	3	(00)	9.5343173	-0.2
						(01)	9.5423794	-0.1
						(12)	9.5579888	0.3
						(11)	9.5427464	-0.1
4	1	4	3	0	3	(00)	13.6180181	-0.2
						(01)	13.6105325	0.3
						(12)	13.5983489	0.2
						(11)	13.6078216	0.3
4	2	2	4	1	3	(00)	8.8326193	-4.4
						(01)	8.8742012	-2.6
						(12)	8.9877496	0.2
						(11)	8.8024198	0.1
4	2	3	4	1	4	(00)	12.5615812	1.1
						(01)	12.4886107	2.7
						(12)	12.3438966	-0.4
						(11)	12.5289805	-0.1
4	3	1	3	2	2	(11)	29.5137418	0.3
4	3	1	4	2	2	(00)	16.7680988	-10.1
						(01)	16.9710250	6.1
						(12)	17.1047684	0.0
						(11)	16.7130308	-0.3

Table S5: Observed frequencies ($v_{Obs.}$) of the (00), (01), (11), and (12) torsional species of 2,5-dimethylthiophene. $v_{Obs.} - v_{Calc.}$ values as obtained after a fit with the program XIAM.

4	3	2	3	2	1	(00)	29.3489770	2.1
						(11)	29.2943697	-0.1
4	3	2	4	2	3	(00)	17.3413095	0.7
						(01)	17.0838880	-5.8
						(12)	16.8956150	-0.9
						(11)	17.2877417	0.3
4	4	0	3	3	0	(12)	36.4610260	-1.0
4	4	0	3	3	1	(11)	36.2672629	-0.1
4	4	1	3	3	0	(00)	36.3402495	3.7
						(11)	36.2647106	-1.1
4	4	1	3	3	1	(00)	36.3427845	121.4ª
						(01)	36.2059699	1.5
						(12)	36.0707866	0.8
5	0	5	4	1	4	(00)	12.8104635	-0.2
						(01)	12.8161123	-0.3
						(12)	12.8261327	0.2
						(11)	12.8173160	0.0
5	1	5	4	0	4	(00)	15.8274913	0.3
						(01)	15.8211763	0.3
						(12)	15.8117354	0.0
						(11)	15.8180447	0.3
5	2	3	5	1	4	(00)	8.5883523	0.6
						(01)	8.6002029	-0.2
						(12)	8.6573483	-0.2
						(11)	8.5606005	0.0
5	2	4	5	1	5	(00)	13.7100406	0.2
						(01)	13.6680106	-2.1
						(12)	13.5809972	0.1
						(11)	13.6773378	0.0
5	3	2	5	2	3	(00)	16.3000706	1.1
						(01)	16.5097668	3.6
						(12)	16.7006530	-2.1
						(11)	16.2441595	0.6
5	3	3	5	2	4	(00)	17.5487510	1.0
						(01)	17.2843342	1.1
						(12)	17.0385646	0.9
						(11)	17.4957106	-0.8
5	4	1	4	3	1	(01)	39.4707114	-1.7
						(12)	39.5305356	-1.4
5	4	1	4	3	2	(00)	39.4198024	-1.5
						(11)	39.3442656	-0.3
5	4	2	4	3	1	(00)	39.4019011	-2.3
						(11)	39.3262585	1.4
5	4	2	4	3	2	(01)	39.2752427	1.2
						(12)	39.1398133	-0.9

6	0	6	5	1	5	(00)	15.9609636	-0.3
						(01)	15.9648206	-0.7
						(12)	15.9713286	0.2
						(11)	15.9659788	0.4
6	1	5	5	2	4	(00)	11.9941358	-0.2
						(01)	12.0369669	0.9
						(12)	12.1303855	0.5
						(11)	12.0228012	-0.5
6	1	5	6	0	6	(00)	9.7432119	-0.6
						(01)	9.7401571	-0.3
						(11)	9.7341613	0.2
6	1	6	5	0	5	(00)	18.0476297	-0.3
						(01)	18.0423861	0.2
						(12)	18.0350255	0.3
						(11)	18.0393073	1.0
6	2	4	6	1	5	(00)	8.6453315	-0.4
						(01)	8.6459070	0.0
						(12)	8.6710172	-0.4
						(11)	8.6209081	0.3
6	2	5	6	1	6	(00)	15.0938338	-0.8
						(01)	15.0647072	-0.6
						(12)	15.0114780	0.2
						(11)	15.0609230	-0.2
6	3	3	6	2	4	(00)	15.6310127	1.1
						(01)	15.8006644	1.0
						(12)	16.0169060	-1.8
						(11)	15.5746017	1.2
6	3	4	6	2	5	(00)	17.8945907	1.3
						(01)	17.6703043	1.4
						(11)	17.8423639	-0.2
7	0	7	6	1	6	(00)	18.9719345	0.1
						(01)	18.9743628	0.5
						(12)	18.9784023	0.3
						(11)	18.9751414	-0.6
7	1	6	6	2	5	(00)	16.0695913	0.3
						(01)	16.0975961	-0.9
						(11)	16.0959109	0.0
7	1	6	7	0	7	(00)	12.1914914	0.3
						(01)	12.1879419	-0.7
						(12)	12.1871051	1.3
						(11)	12.1816922	0.1
7	1	7	6	0	6	(00)	20.3353917	0.2
						(01)	20.3311854	-0.2
						(12)	20.3255799	-0.6
						(11)	20.3284180	-1.1

7	2	5	7	1	6	(00)	9.1018196	0.0
						(01)	9.0986020	0.2
						(12)	9.1092128	-0.3
						(11)	9.0813360	0.9
7	2	6	6	1	5	(00)	27.2946495	-1.9
						(01)	27.2700520	0.9
						(12)	27.2279202	1.5
						(11)	27.2634222	-1.5
7	2	6	7	1	7	(00)	16.7024726	0.2
						(01)	16.6790225	-0.3
						(12)	16.6423931	1.3
						(11)	16.6691639	-1.8
7	3	4	7	2	5	(00)	14.8294534	0.0
						(01)	14.9308278	-1.3
						(11)	14.7736285	-0.1
7	3	5	6	2	4	(00)	37.0634786	1.3
						(01)	36.8830885	1.5
7	3	5	7	2	6	(00)	18.4141567	-1.0
						(01)	18.2589415	-1.5
						(11)	18.3630346	0.7
7	5	2	7	4	3	(00)	30.7867789	2.3
						(01)	30.8452546	1.3
						(12)	30.8942989	0.8
						(11)	30.6900419	-2.3
7	5	3	7	4	4	(00)	30.8056399	-2.2
						(12)	30.5045854	-0.5
						(11)	30 7090747	14

Table S6: Comparison of the fits using Watson's A and Watson's S reduction in I^r representation using the program XIAM. The centrifugal distortion constants calculated at the MP2/6-311++G(d,p) level of theory are in reasonable agreement with the experimental values in both cases.

a) Watson's A reduction

Par. ^a	Unit	Fit I	Fit II	Calc.	
1	СЦа	4.97224360(42	4.96500697(89)	4.941	
A	UПZ)		4	
R	GHz	1.74696506(27	1.74694756(13)	1.742	
D	UIIZ)		6	
C	GHz	1.31337981(20	1.313336623(81	1.309	
C	OIIZ))	4	
Δ.	kHz	0.0684(28)	0.0672(11)	0.063	
Δj	KI IZ	0.0001(20)		0	
Δ_{JK}	kHz	0.2071(93)	0.1579(37)	0.171	
Δ_K	kHz	3.2158(98)	0.9161(43)	0.803	
8.	ŀН 7	0.0196(14)	0.01839(51)	0.017	
0 <i>j</i>	KI IZ	0.0170(14)		1	
δ	ŀН 7	0 136(23)	0.1031(89)	0.039	
O_K	KI IZ	0.150(25)		0	
V_{2}	cm ⁻		247.95594(30)	241.2	
' 3	1				
I_{α}	uÅ ²		3.16442(39)		
∠(i, <i>a</i>)	0		14.5931(78) ^b	14.90	
∠(i,b)	0		75.4069(78)	75.10	
∠(i,c)	0		90.00(fixed)	89.96	
F_{12}	GHz		-7.320(12)		Fit I:
D _{pi2J}	kHz		-2.78(25)		matrix of fitted
D_{pi2K}	kHz		-98.9(42)		linear
D_{pi2-}	kHz		1.97(19)		combinations as
σ^{c}	kHz	2.6	1.9		given in the
Nd		41	157		AIAWI Output.
B_ P	1.000	1 000			
D_K	-0.133	1.000			

B_J	0.293	-0.375	1.000					
Δ_J	0.441	-0.377	0.909	1.000				
Δ_K	0.237	-0.096	0.265	0.350	1.000			
Δ_{JK}	-0.332	0.756	-0.390	-0.524	-0.635	1.000		
δ_J	0.942	-0.154	0.296	0.391	0.220	-0.285	1.000	
δ_K	0.430	0.003	0.096	0.381	0.192	-0.321	0.185	1.000
Stronge	est correlati	on between	n δ_J and B	(0.9422)				

b) Watson's S reduction

Dor 2	I Init	E:4 I	Fit II	MP2/6-
Par."	Unit	FIT I		311 + + G(d,p)
A	GHz	4.97224362(42	4.96500700(89)	4.9414
)		
В	GHz	1.74696478(26	1.74694735(13)	1.7426
)		
С	GHz	1.31338008(20	1.313336823(81	1.3094
))	
D_J	kHz	0.0642(26)	0.06390(97)	0.0618
D_{JK}	kHz	0.2328(89)	0.1774(35)	0.178
D_K	kHz	3.1944(97)	0.8998(43)	0.797
d_{I}	kHz	-0.0196(14)	-0.01839(51)	-0.0171
d_2	kHz	-0.00214(23)	-0.00163(14)	-0.000619
IZ.	cm-		247.95610(30)	241.2
V 3	1			
I_{α}	uŲ		3.16442(39)	
$\angle(i,a)$	0		14.5931(78) ^b	14.90
∠(i,b)	0		75.4069(78)	75.10
∠(i,c)	0		90.00(fixed)	89.96
F_{12}	GHz		-7.320(12)	
D_{pi2J}	kHz		-2.77(25)	
D_{pi2K}	kHz		-99.0(42)	
D_{pi2-}	kHz		1.97(19)	

σ^{c}	kHz 2.6	1.9
\mathbf{N}^{d}	41	157

-0.374 B_J 0.288 1.000 D_J 0.343 -0.4030.948 1.000 -0.1010.232 0.276 D_{IK} 0.149 1.000 -0.431 D_K -0.2050.793 -0.362-0.6261.000 d_1 -0.9710.151 -0.294-0.368-0.1530.209 1.000 d_2 -0.122-0.019-0.089-0.1290.174 -0.1440.185 1.000 Strongest correlation between d_1 and B_- (-0.9711)

Fit I: Correlation matrix of fitted linear combinations as given in the XIAM output.

B₋ 1.000

 B_K -0.148 1.000

Fit II, Watson's A: Correlation matrix of fitted linear combinations as given in the XIAM output.

 B_{-} 1 -0.078 B_K 1 0.456 -0.048 B_J 1 0.385 0.029 0.75 Δ_J 0.231 0.411 0.267 0.342 1 Δ_K -0.2870.015 -0.310-0.501-0.624 Δ_{JK} 1 0.793 0.082 0.299 0.433 0.24 -0.275 δ_J 1 -0.025 δ_K 0.222 0.169 0.376 0.195 -0.309 0.181 1 V_{1n} 0.142 0.896 0.173 0.061 0.462 -0.101 0.102 0.056 1 -0.294delta -0.4770.137 -0.415 0.031 -0.1070.041 -0.0060.251 0.098 0.932 0.136 0.066 0.463 -0.0990.104 0.083 0.995 -0.201 F_0 0.009 0.066 -0.015 0.072 -0.004 -0.019 0.048 0.122 0.039 0.043 0.043 F₁₂ - 1 D_{pi2K} 0.066 -0.992 0.012 -0.077 -0.426 0.081 -0.172-0.903-0.939-0.065-0.101-0.1401 D_{pi2J} -0.415 0.051 -0.599 -0.041 -0.1010.013 -0.0610.172 -0.268 0.719 -0.2030.062 -0.0551 D_{pi2-} -0.539 0.034 -0.410 0.007 -0.1510.063 -0.014 0.194 -0.345 0.878 -0.265 0.068 -0.035 0.702 1 strongest correlation between F_0 and V_{1n} (0.9953)

Fit II, Watson's S: Correlation matrix of fitted linear combinations as given in the XIAM output.

 B_{-} 1 B_K -0.128 B_J 0.475 -0.048 1 D_J 0.325 -0.017 0.81 D_{JK} 0.202 0.279 0.359 0.277 1 D_K -0.2410.097 -0.334 -0.410 -0.6121 d_1 -0.759 -0.083 -0.297 -0.411 -0.1830.198 1 d_2 0.057 -0.171 0.032 -0.113 0.133 -0.161 0.182 V_{1n} 0.13 0.895 0.174 0.049 0.449 -0.078-0.102-0.0561 -0.5600.137 -0.418-0.040 -0.191 0.163 0.006 -0.251-0.296delta F₀ 0.078 0.932 0.136 0.047 0.441 -0.063 -0.104-0.0830.995 -0.2021 -0.0260.066 -0.0150.042 -0.044 0.039 -0.048-0.1220.039 0.042 0.043 1 F_{12} D_{pi2K} 0.116 -0.992 0.013 -0.033 -0.374 0.001 0.101 0.172 -0.902 -0.139 -0.939 -0.065 1 strongest correlation between F_0 and V_{1n} (0.9953)