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A. Local excess chemical potentials
Classical density functional theory (CDFT) provides an analytical expression for the local
excess chemical potentials of ionic species, i.e., g in Eq. (1) in the main text. For the primitive
model of electrolyte solutions used in this work, ™ includes contributions due to hard-sphere
(HS) repulsion and electrostatic correlation (EL)
()= (0) + 1™ (r) \* MERGEFORMAT (S1)
The hard-sphere term accounts for the ionic excluded volume effects, which can be accurately
described with the modified fundamental measure theory (MFMT)!-2
Bu'® (r)= Zjdr'gﬁaa)f“)(r -r') \* MERGEFORMAT (S2)
In Eq.\* MERGEFORMAT (S2), the summation applies to six weight functions, a)f”‘)(r),
a=0,1,2,3,V1,VV2, that are the same as those in the original fundamental measure theory3.
Among them, two scalar weight functions are related to the volume and the surface area for a

spherical particle of diameter o, :
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0P(r)=6(r-o,/2) \* MERGEFORMAT (S3)

0P (r)=8(r-o,/2) \* MERGEFORMAT (S4)

where 7 =|r , 0(r) is the Dirac-delta function, and &(r) is the Heaviside step function; and one

is a surface vector weight function related to the variance across the particle surface
®?(r)=(r/q)é(r-0./2) \* MERGEFORMAT (S5)
Other weight functions are given by
a)fo)(r) = a)l@(r) / (7z0'i2), a)fl)(r) = a)fz)(r) /(2ro)), O)SVI)(r) = 0)§V2)(r) /(2no,)\* MERGEFORMAT (S6)
The coefficients on the right side of Eq.\* MERGEFORMAT (S2) are defined by the
functional derivatives of the local excess Helmholtz energy density with respect to the six

weighted densities:
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2 \* MERGEFORMAT (S11)

P n, n +(1-n,)* In(1-n,)

nn.,(1-c*)*\* MERGEFORMAT (S12
1—}’13 672']’132(1—1’13)2 2 v2( g ) ( )

where ¢ =n , /n,, and the weighted densities are
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n,(0)=3n, (=3 [ dr'p,(r)@ (r—r') ¥ MERGEFORMAT (S13)

In the slab geometry, the ionic density profiles vary only in the direction perpendicular to the

surface, viz, p,(r)= p,(z). In that case, the weighted densities are

no,(2) = 2242 \* MERGEFORMAT (S14)

' 7o,
n, () = 2s?) \* MERGEFORMAT (S15)

’ 2ro,
m(@)=m0,[ " dz p(2) \* MERGEFORMAT (S16)

n(2)=z[ """ dz' p()o? /4~ ('~ 2)']\* MERGEFORMAT (S17)
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n,,(z)= \* MERGEFORMAT (S18)
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n,,,(z)= —27[0' [ p(z)(z'~2)dz" \* MERGEFORMAT (S19)

Similarly, the local excess chemical potentials are

#,.(2) = ¢2”‘(f \* MERGEFORMAT (S20)
_9,.(2) N
¢ (z) == \* MERGEFORMAT (S21)
’ 270,
$,.(2) =70, | "Z dz'$,(z") \* MERGEFORMAT (S22)

b ()=x[ """ dz'¢, (N[0} / 4~ ('~ 2)°]\* MERGEFORMAT (523)

_ ¢V2,i (2)
Pri(2) == \* MERGEFORMAT (S24)
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by2,(2) =70 Zf"/j $,,(z)(z' —2)dz  \* MERGEFORMAT (S25)
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As detailed in our previous work* 3, the reduced excess chemical potential due to the

electrostatic correlations is given by

A (r)=Bu (o (2= R1- X [ 80, () (r -

J=te

r'\* MERGEFORMAT (S26)

According to the mean-spherical approximation (MSA)®, the direct correlation function (DCF) is

¢, (q)=-21, [—ZZNJ. +X,(N,+TX,)~(0,/3)(N,+TX,) ] \* MERGEFORMAT (S27)
for the range of 0<g < ‘01. —O'j‘/2
cf'(9)=1s] (0. -, )L, =1L, + L, + ¢*L, |\* MERGEFORMAT (S28)
and for ‘0'1. -0, ‘ /2<q<0o,. The MSA parameters are calculated from
X+ X,

L= = (5= 2 (4, Y 4N |

L, =(Xi—Xj)(NI.—N].)+(Xi + X ) +(o,+0,)N.N,

- [aisf +0,87]/3 \* MERGEFORMAT (S29)
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S, =N +TX, \* MERGEFORMAT (S30)

1/2
=| 71,y p(z=R,x) X} \* MERGEFORMAT (S31)
B - i i

N =Zi % \* MERGEFORMAT (S32)

where X, is solved from the following non-linear equations

(1+T0,)X, +acY. p,(z = R,x)o, X, = Z,\* MERGEFORMAT (833)
J
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a=(r/ 2){1 ~(7/6)> p(z= R,x)of} \* MERGEFORMAT (S34)

As shown in our previous work’, the quadratic expansion is sufficient to capture counter-intuitive
electrostatic phenomena such as attraction between like charges and charge inversion in the

presence of multivalent ions, which defy the conventional mean-field theories.
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B. Ionic density profiles in electrodes of various pore size
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Figure S1 The reduced ionic density profiles in electrodes with slit pores. In all cases, the
electrode potential is 0.1 V.
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Figure S2 The averaged ion density (p/p°"¥) versus the pore size for an electrode with slit pores
in contact with river water (pb'* =0.024 M) and seawater (p*x =0.600 M). Here the electrode

potential is 1.5 V.
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