Isotopic Studies of the Ammonia Decomposition Reaction Mediated by Sodium Amide: Supplementary Information

Thomas J. Wood[†], Joshua W. Makepeace^{†‡}, Hazel M. A. Hunter[†], Martin O. Jones[†] and William I. F. David^{†‡}*

⁺ ISIS Facility, Rutherford Appleton Laboratory, Harwell Oxford, Didcot, OX11 0QX, UK
⁺ Inorganic Chemistry Laboratory, University of Oxford, Oxford, OX1 3QR, UK
*Corresponding author: bill.david@stfc.ac.uk

Contents:	Page
Experimental Details	S1
Raman Spectra (Figure S1)	S3
Infrared Data (Figures S2–S5)	S4–S7
Mass Spectrometry Fragmentation Patterns (Table S1)	S8

EXPERIMENTAL DETAILS

Raman Microscopy

NaNH₂ and NaND₂ starting materials were characterised by Raman microscopy (Bruker Senterra system with OPUS 7.0 software) using an incident beam of 532 nm. Spectra were collected over 4500–100 cm⁻¹. The spectra are shown in Figure S1. Peaks for NaNH₂ can be assigned to NH₂ asymmetric stretch (3265 cm⁻¹), NH₂ symmetric stretch (3213 cm⁻¹), NH₂ bend (1535 cm⁻¹) and lattice modes (532 cm⁻¹, 469 cm⁻¹, 246 cm⁻¹, 177 cm⁻¹ and 110 cm⁻¹).¹ There is also a small peak at 3633 cm⁻¹ caused by some oxidation (to NaOH) upon transferral to the Raman microscope. The NaND₂ spectrum shows similar peaks for ND₂ asymmetric stretch (2432 cm⁻¹), ND₂ symmetric stretch (2359 cm⁻¹), ND₂ bend (1130 cm⁻¹) and lattice modes (397 cm⁻¹, 336 cm⁻¹, 230 cm⁻¹, 173 cm⁻¹ and 102 cm⁻¹).

Mass Spectrometry Data Analysis

Calibration runs of 100% pure Ar, N₂, ND₃, NH₃, H₂ and D₂ were carried out in order to ascertain the fragment peak ratios, Table S1. For partially deuterated species (ND₂H, NDH₂, HD), fragmentation patterns were linearly interpolated from their wholly hydrated or deuterated isotopologues. The ammonia species were presumed to be statistically scrambled such that the following relationships were true:

$$f_{NH_3} = (1 - D_{am})^3 f_{am}$$
$$f_{NDH_2} = (1 - D_{am})^2 D_{am} f_{am}$$
$$f_{ND_2H} = (1 - D_{am}) D_{am}^2 f_{am}$$
$$f_{ND_3} = D_{am}^3 f_{am}$$

Where f_i refers to the fraction of isotopologue *i* and f_{am} and D_{am} are the total fraction of ammonia species and the deuteration fraction of those species as defined by:

$$f_{am} = f_{NH_3} + f_{NDH_2} + f_{ND_2H} + f_{ND_3}$$

$$D_{am} = \frac{\frac{1}{3}f_{NDH_2} + \frac{2}{3}f_{ND_2H} + f_{ND_3}}{f_{NH_3} + f_{NDH_2} + f_{ND_2H} + f_{ND_3}}$$

As such, for the ammonia species, the two parameters f_{am} and D_{am} were used instead of the four fractional components in order to reduce the number of parameters fitted.

Histograms were fitted to linear combinations of the fragmentation patterns in Table S1, *i.e.* $\sum f_i F_i$, where F_i is the fragmentation pattern for species *i* with some modifications. The modifications to the fragmentation patterns of Table S1 were for the ions where an extra H or D atom had been gathered before detection. These are (including all isotopologues): H_3^+ , H_2D^+ , HD_2^+ , D_3^+ , NH_4^+ , NDH_3^+ , $ND_2H_2^+$, ND_3H^+ , ND_4^+ . These fragmentation fractions were modified according to the concentrations of H or D species going into the mass spectrometer. As way of example, the m/z peak at 18 for NH_4^+ for a 50/50 mixture of NH_3 and ND_3 would be split into two peak contributions of equal heights at m/z 18 and m/z 19 corresponding to NH_4^+ and NDH_3^+ respectively (similar modifications would be carried out for NDH_2 , ND_2H and ND_3). A Levenberg-Marquardt least-squares algorithm was used to minimise the error for the fits.

References

(1) A. Liu and Y. Song, In Situ High-Pressure Study of Sodium Amide by Raman and Infrared Spectroscopies, *J. Phys. Chem. B*, 2011, **115**, 7–13.

Figure S1: Normalized Raman plot of NaNH₂ and NaND₂ starting materials.

Figure S2: Infrared raw (background-subtracted) gas-phase spectra from the blank reactor at 0 minutes (shown in blue, *i.e.* all ammonia peaks are due to NH_3) and 100 minutes (shown in green, all ammonia peaks due to ND_3). Peak areas calculated for the regions shown within grey dashed lines.

Figure S3: Infrared v(N-H) and v(N-D) peak areas relative to 100% NH_3 or ND_3 for the blank reactor run under 25 sccm NH_3 and subsequently 25 sccm ND_3 .

Figure S4: Infrared v(N-H) and v(N-D) peak areas relative to 100% NH_3 or ND_3 for $NaNH_2$ run under 25 sccm NH_3 and subsequently 25 sccm ND_3 .

Figure S5: Infrared v(N-H) and v(N-D) peak areas relative to 100% NH_3 or ND_3 for $NaND_2$ run under 25 sccm ND_3 and subsequently 25 sccm NH_3 .

Table S1: Mass Spectrometry Fragmentation Patterns for Pure Gases

Gas (pure)	m/z	Fraction	Associated Fragment
Ar	40	0.8768	⁴⁰ Ar ⁺
	36	0.0026	³⁶ Ar ⁺
	20	0.1206	⁴⁰ Ar ⁺⁺
N ₂	29	0.0072	$^{14}N^{15}N^{+}$
	28	0.9369	$^{14}N_{2}^{+}$
	14	0.0559	¹⁴ N ⁺
ND_3	28	0.0151	N_2^+
	22	0.0126	ND_4^+
	20	0.5459	ND_3^+
	18	0.3816	ND_2^+
	16	0.0116	ND^+
	14	0.0051	N ⁺
	4	0.0092	D_2^+
	2	0.0189	D^+
NH₃	28	0.0168	N_2^+
	18	0.0269	NH_4^+
	17	0.5259	NH_3^+
	16	0.3754	NH ₂ ⁺
	15	0.0175	NH^+
	14	0.0066	N ⁺
	2	0.0142	H_2^+
	1	0.0168	H^+
D ₂	6	0.0068	D_3^+
	4	0.9802	D_2^+
	2	0.0130	D ⁺
H ₂	3	0.0072	H ₃ ⁺
	2	0.7151	H_2^+
	1	0.2777	H⁺