Vibrational and coherence dynamics in molecules: Supplementary Information

Zhedong Zhang¹ and Jin Wang^{1,2,3} ¹Department of Physics and Astronomy, SUNY Stony Brook, Stony Brook, NY 11794, USA

²Department of Chemistry, SUNY Stony Brook, Stony Brook, NY 11794, USA and

³State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry,

Chinese Academy of Sciences, Changchun, Jilin 130022, P. R. China

(Dated: August 4, 2015)

I. DERIVATION OF QUANTUM MASTER EQUATION

To derive the operator master equation in Eq.(2) in main text, we first need to diagonalize the system Hamiltonian by Bogoliubov transform: $H_s = E_1 \eta_1^{\dagger} \eta_1 + E_2 \eta_2^{\dagger} \eta_2$ where

$$\begin{pmatrix} a_1 \\ a_2 \end{pmatrix} = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \eta_1 \\ \eta_2 \end{pmatrix}, \quad U = \begin{pmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{pmatrix}$$
(1)

and the mixture angle

$$\theta = \frac{1}{2} \tan^{-1} \left(\frac{2\Delta}{\varepsilon_1 - \varepsilon_2} \right), \quad \frac{\pi}{2} < \theta < \frac{3\pi}{4}$$
(2)

thus the interaction to T_1 -bath is

$$H_{int}^{(1)} = (-i) \sum_{i=1}^{2} \sum_{\nu=1}^{2} \left(U_{i\nu} \eta_{\nu} - U_{\nu i}^{\dagger} \eta_{\nu}^{\dagger} \right) \otimes B = \sum_{i=1}^{2} \sum_{\nu=1}^{2} \sum_{\omega_{\nu}} A_{i\nu}(\omega_{\nu}) \otimes B$$
$$B = i \sum_{\mathbf{k},\sigma} g_{\mathbf{k}\sigma} \left(b_{\mathbf{k}\sigma}^{(1)} e^{i\mathbf{k}\cdot\mathbf{r}} - b_{\mathbf{k}\sigma}^{(1),\dagger} e^{-i\mathbf{k}\cdot\mathbf{r}} \right)$$
(3)

where the operator $A_{i\nu}(\omega_{\nu})$ takes the form of

$$A_{i\nu}(\omega_{\nu} > 0) = -iU_{i\nu}\eta_{\nu}, \quad A^{\dagger}_{i\nu}(\omega_{\nu} > 0) = iU^{\dagger}_{\nu i}\eta^{\dagger}_{\nu}$$

$$A_{i\nu}(\omega_{\nu} < 0) = iU^{\dagger}_{\nu i}\eta^{\dagger}_{\nu}, \quad A^{\dagger}_{i\nu}(\omega_{\nu} < 0) = -iU_{i\nu}\eta_{\nu}$$

$$\tag{4}$$

Switching into interaction picture, the interaction reads

$$\tilde{H}_{int}^{(1)}(t) = \sum_{i=1}^{2} \sum_{\nu=1}^{2} \sum_{\omega_{\nu}} A_{i\nu}(\omega_{\nu}) e^{-i\omega_{\nu}t} \otimes B(t)$$

$$B(t) = i \sum_{\mathbf{k},\sigma} g_{\mathbf{k}\sigma} \left[b_{\mathbf{k}\sigma}^{(1)} e^{i(\mathbf{k}\cdot\mathbf{r}-\omega_{\mathbf{k}\sigma}t)} - b_{\mathbf{k}\sigma}^{(1),\dagger} e^{-i(\mathbf{k}\cdot\mathbf{r}-\omega_{\mathbf{k}\sigma}t)} \right]$$
(5)

and subsequently the correlation function of the environment can be obtained

$$\langle B(t)B(t-s)\rangle = \sum_{\mathbf{k},\sigma} g_{\mathbf{k}\sigma}^2 \left[n_{\mathbf{k}\sigma} e^{i\omega_{\mathbf{k}\sigma}s} + (n_{\mathbf{k}\sigma}+1)e^{-i\omega_{\mathbf{k}\sigma}s} \right]$$
(6)

As is known, the general form of the dynamical equation of density matrix up to the 2nd order of system-bath interaction is

$$\frac{d\rho_s}{dt} = \frac{i}{\hbar} [\rho_s, H_s] - \frac{1}{\hbar^2} e^{-iH_s t/\hbar} \operatorname{Tr}_R \int_0^t ds \; [\tilde{H}_{int}(s), [\tilde{H}_{int}(t), \tilde{\rho}_s(t) \otimes \rho_R(0)]] e^{iH_s t/\hbar} \tag{7}$$

which, in terms of Eq.(4) gives the dissipation term contributed by the T_1 -bath

$$D^{(1)}(\rho_s) = \frac{1}{\hbar^2} \operatorname{Tr}_R \int_0^t \left(\tilde{H}_{int}^{(1)}(t-s) \tilde{\rho}_s(t) \rho_R \tilde{H}_{int}^{(1)}(t) - \tilde{H}_{int}^{(1)}(t) \tilde{H}_{int}^{(1)}(t-s) \tilde{\rho}_s(t) \rho_R \right) ds + \text{h.c.}$$

$$= \sum_{i,j=1}^2 \sum_{\nu,\mu=1}^2 \sum_{\omega_\nu,\omega_\mu} e^{i(\omega_\mu - \omega_\nu)t} \left[A_{i\nu}(\omega_\nu) \rho_s(t) A_{j\mu}^{\dagger}(\omega_\mu) - A_{j\mu}^{\dagger}(\omega_\mu) A_{i\nu}(\omega_\nu) \rho_s(t) \right] \times \int_0^t e^{i\omega_\nu s} \langle B(t)B(t-s)\rangle ds + \text{h.c.}$$

$$= \frac{1}{\hbar^2} \sum_{i,j=1}^2 \sum_{\nu,\mu=1}^2 \sum_{\omega_\nu} \sum_{\omega_\mu} e^{i(\omega_\mu - \omega_\nu)t} \Gamma^1(\omega_\nu) \left[A_{i\nu}(\omega_\nu) \rho_s(t) A_{j\mu}^{\dagger}(\omega_\mu) - A_{j\mu}^{\dagger}(\omega_\mu) A_{i\nu}(\omega_\nu) \rho_s(t) \right] + \text{h.c.}$$
(8)

where

$$\Gamma^{1}(\omega_{\nu}) = \int_{0}^{t} e^{i\omega_{\nu}s} \langle B(t)B(t-s)\rangle ds = \begin{cases} \pi \sum_{\mathbf{k},\sigma} g_{\mathbf{k}\sigma}^{2} n_{\mathbf{k}\sigma}^{T_{1}} \delta(\omega_{\nu} + \omega_{\mathbf{k}\sigma}) = \hbar^{2}\gamma n_{\nu}^{T_{1}}, & \text{when } \omega_{\nu} < 0 \\ \pi \sum_{\mathbf{k},\sigma} g_{\mathbf{k}\sigma}^{2} (n_{\mathbf{k}\sigma}^{T_{1}} + 1) \delta(\omega_{\nu} - \omega_{\mathbf{k}\sigma}) = \hbar^{2}\gamma (n_{\nu}^{T_{1}} + 1), & \text{when } \omega_{\nu} > 0 \end{cases}$$

$$(9)$$

Notice that $\gamma = \pi g_{\bar{\nu}}^2 D_{\bar{\nu}} / \hbar^2$, $D_{\bar{\nu}}$ is the density of states (DOS) and the summation over wave vector was replaced by the integral in frequency domain

$$\sum_{\mathbf{k},\sigma} \longrightarrow \int D(\omega_{\mathbf{k}\sigma}) \mathrm{d}\omega_{\mathbf{k}\sigma} \tag{10}$$

Under the rotating-wave approximation (RWA), the dissipation term in Schrödinger picture then reads

$$D^{(1)}(\rho_{s}) = \frac{1}{\hbar^{2}} \sum_{i,j=1}^{2} \sum_{\nu,\mu=1}^{2} \left\{ \Gamma^{1}(\omega_{\nu} > 0) U_{i\nu} U^{\dagger}_{\mu j} \left[\eta_{\nu} \rho_{s}(t) \eta^{\dagger}_{\mu} - \eta^{\dagger}_{\mu} \eta_{\nu} \rho_{s}(t) \right] + \Gamma^{1}(\omega_{\nu} < 0) U^{\dagger}_{\nu i} U_{j\mu} \left[\eta^{\dagger}_{\nu} \rho_{s}(t) \eta_{\mu} - \eta_{\mu} \eta^{\dagger}_{\nu} \rho_{s}(t) \right] \right\} + \text{h.c.}$$
(11)
$$= \sum_{j=1}^{2} \sum_{p=1}^{2} \left[\gamma_{p}^{T_{1},+} \left(a_{p} \rho_{s}(t) a^{\dagger}_{j} - a^{\dagger}_{j} a_{p} \rho_{s}(t) \right) + \gamma_{p}^{T_{1},-} \left(a^{\dagger}_{p} \rho_{s}(t) a_{j} - a_{j} a^{\dagger}_{p} \rho_{s}(t) \right) \right] + \text{h.c.}$$

For the interaction to T_2 -bath

$$H_{int}^{(2)} = (-i) \sum_{\nu=1}^{2} \left(U_{2\nu} \eta_{\nu} - U_{\nu 2}^{\dagger} \eta_{\nu}^{\dagger} \right) \otimes C = \sum_{\nu=1}^{2} \sum_{\omega_{\nu}} A_{2\nu}(\omega_{\nu}) \otimes C$$

$$C = i \sum_{\mathbf{q},s} f_{\mathbf{q}s} \left(b_{\mathbf{q}s}^{(2)} e^{i\mathbf{q}\cdot\mathbf{r}} - b_{\mathbf{q}s}^{(2),\dagger} e^{-i\mathbf{q}\cdot\mathbf{r}} \right)$$
(12)

the procedures are similar as that for radiations and thus we omit the details to avoid redundancy. The dissipation term induced by T_2 -bath then is of the form

$$D^{(2)}(\rho_s) = \sum_{p=1}^{2} \left[\gamma_p^{T_2,+} \left(a_p \rho_s(t) a_2^{\dagger} - a_2^{\dagger} a_p \rho_s(t) \right) + \gamma_p^{T_2,-} \left(a_p^{\dagger} \rho_s(t) a_2 - a_2 a_p^{\dagger} \rho_s(t) \right) \right] + \text{h.c.}$$
(13)

therefore the whole dissipation term contributed by environments reads

$$D(\rho_{s}) = D^{(1)}(\rho_{s}) + D^{(2)}(\rho_{s})$$

$$= \sum_{j=1}^{2} \sum_{p=1}^{2} \left[\gamma_{p}^{T_{1},+} \left(a_{p}\rho_{s}(t)a_{j}^{\dagger} - a_{j}^{\dagger}a_{p}\rho_{s}(t) \right) + \gamma_{p}^{T_{1},-} \left(a_{p}^{\dagger}\rho_{s}(t)a_{j} - a_{j}a_{p}^{\dagger}\rho_{s}(t) \right) \right]$$

$$+ \sum_{p=1}^{2} \left[\gamma_{p}^{T_{2},+} \left(a_{p}\rho_{s}(t)a_{2}^{\dagger} - a_{2}^{\dagger}a_{p}\rho_{s}(t) \right) + \gamma_{p}^{T_{2},-} \left(a_{p}^{\dagger}\rho_{s}(t)a_{2} - a_{2}a_{p}^{\dagger}\rho_{s}(t) \right) \right] + \text{h.c.}$$
(14)

which gives the expression in Eq.(2) in main text. The expressions of dissipation rates in Eq.(13) are

$$\begin{split} \gamma_{1}^{T_{1},+} &= \gamma \hbar^{2} \left[n_{\nu_{1}}^{T_{1}} \cos^{2}\theta + n_{\nu_{2}}^{T_{1}} \sin^{2}\theta + 1 + (n_{\nu_{1}}^{T_{1}} - n_{\nu_{2}}^{T_{1}}) \sin\theta \cos\theta \right] \\ \gamma_{2}^{T_{1},+} &= \gamma \hbar^{2} \left[n_{\nu_{1}}^{T_{1}} \sin^{2}\theta + n_{\nu_{2}}^{T_{1}} \cos^{2}\theta + 1 + (n_{\nu_{1}}^{T_{1}} - n_{\nu_{2}}^{T_{1}}) \sin\theta \cos\theta \right] \\ \gamma_{1}^{T_{1},-} &= \gamma \hbar^{2} \left[n_{\nu_{1}}^{T_{1}} \cos^{2}\theta + n_{\nu_{2}}^{T_{1}} \sin^{2}\theta + (n_{\nu_{1}}^{T_{1}} - n_{\nu_{2}}^{T_{1}}) \sin\theta \cos\theta \right] \\ \gamma_{2}^{T_{1},-} &= \gamma \hbar^{2} \left[n_{\nu_{1}}^{T_{1}} \sin^{2}\theta + n_{\nu_{2}}^{T_{1}} \cos^{2}\theta + (n_{\nu_{1}}^{T_{1}} - n_{\nu_{2}}^{T_{1}}) \sin\theta \cos\theta \right] \\ \gamma_{1}^{T_{2},+} &= \gamma \hbar^{2} (n_{\nu_{1}}^{T_{2}} - n_{\nu_{2}}^{T_{2}}) \sin\theta \cos\theta, \quad \gamma_{2}^{T_{2},+} &= \gamma \hbar^{2} (n_{\nu_{1}}^{T_{2}} \sin^{2}\theta + n_{\nu_{2}}^{T_{2}} \cos^{2}\theta + 1) \\ \gamma_{1}^{T_{2},-} &= \gamma \hbar^{2} (n_{\nu_{1}}^{T_{2}} - n_{\nu_{2}}^{T_{2}}) \sin\theta \cos\theta, \quad \gamma_{2}^{T_{2},-} &= \gamma \hbar^{2} (n_{\nu_{1}}^{T_{2}} \sin^{2}\theta + n_{\nu_{2}}^{T_{2}} \cos^{2}\theta) \end{split}$$

II. SOLVING THE DYNAMICAL EQUATION IN COHERENT SPACE

To solve the PDE in Eq.(5) in main text, we first calculate the biorthogonal eigenvectors of the drift matrix Σ and the results are

$$\begin{aligned} \lambda_{1} &= \frac{1}{2} \left[\gamma(3+F) + i(\nu_{1}+\nu_{2}+\gamma G) \right], \quad u^{(1)} = \begin{pmatrix} 2(\epsilon+id)\\p_{+}+iq_{+}\\0\\0 \end{pmatrix}, \quad v^{(1)} &= \left(-\frac{p_{-}-iq_{-}}{4(\epsilon+id)(F+iG)} - \frac{1}{2(F+iG)} - 0 - 0 \right) \\ \lambda_{2} &= \frac{1}{2} \left[\gamma(3-F) + i(\nu_{1}+\nu_{2}-\gamma G) \right], \quad u^{(2)} &= \begin{pmatrix} 2(\epsilon+id)\\p_{-}-iq_{-}\\0\\0 \end{pmatrix}, \quad v^{(2)} &= \left(\frac{p_{+}+iq_{+}}{4(\epsilon+id)(F+iG)} - \frac{1}{2(F+iG)} - 0 - 0 \right) \\ \lambda_{3} &= \frac{1}{2} \left[\gamma(3+F) - i(\nu_{1}+\nu_{2}+\gamma G) \right], \quad u^{(3)} &= \begin{pmatrix} 0\\0\\2(\epsilon-id)\\p_{+}-iq_{+} \end{pmatrix}, \quad v^{(3)} &= \left(0 - \frac{p_{-}+iq_{-}}{4(\epsilon-id)(F-iG)} - \frac{1}{2(F-iG)} \right) \\ \lambda_{4} &= \frac{1}{2} \left[\gamma(3-F) - i(\nu_{1}+\nu_{2}-\gamma G) \right], \quad u^{(4)} &= \begin{pmatrix} 0\\0\\2(\epsilon-id)\\p_{-}+iq_{-} \end{pmatrix}, \quad v^{(4)} &= \left(0 - \frac{p_{+}-iq_{+}}{4(\epsilon-id)(F-iG)} - \frac{1}{2(F-iG)} \right) \end{aligned}$$

then the σ -matrix is of the form

$$\sigma_{ij}(t) = 2\sum_{\alpha,\beta\in R} \frac{1 - e^{-(\lambda_{\alpha} + \lambda_{\beta})t}}{\lambda_{\alpha} + \lambda_{\beta}} D^{(\alpha,\beta)} u_i^{(\alpha)} u_j^{(\beta)}, \quad D^{(\alpha,\beta)} = \sum_{k,l\in R} v_k^{(\alpha)} D_{kl} v_l^{(\beta)}$$
(17)

where D is the diffusion matrix defined in Eq.(6) in main text. Hence from the literature the full solution to the PDE with respect to the initial condition $P(\alpha_{\mu}, \alpha_{\mu}^*, 0) = \delta^{(2)}(\alpha_1)\delta^{(2)}(\alpha_2)$ reads

$$P(\alpha_{\mu}, \alpha_{\mu}^{*}, t) = \frac{1}{\sqrt{(2\pi)^{4} \det[\sigma(t)]}} \exp\left[-\frac{1}{2} \sum_{i,j \in R} \sigma_{ij}^{-1}(t) x_{i} x_{j}\right]$$
(18)

where $R = \{1, 2, 1^*, 2^*\}$ and $x = \{\alpha_1, \alpha_2, \alpha_1^*, \alpha_2^*\}$. The expectation value of observable within normal order is

$$\langle (a_1^{\dagger})^m (a_2^{\dagger})^n a_1^k a_2^l \rangle = \int (\alpha_1^*)^m (\alpha_2^*)^n \alpha_1^k \alpha_2^l P(\alpha_\mu, \alpha_\mu^*, t) d^2 \alpha_1 d^2 \alpha_2$$
(19)

The coefficients \mathbf{A}_{\dots} are

$$\begin{split} \Lambda_{11}^{13} &= \frac{1}{P^2 + G^2} \left(\frac{1 - e^{-\gamma(3+P)t}}{3 + F} \frac{p_{-}^2}{2} + \frac{1 - e^{-\gamma(3-P)t}}{3 - F} \frac{p_{+}^2 + q_{+}^2}{2} - \operatorname{Rc} \left[\frac{1 - e^{-\gamma(3+G)t}}{3 + iG} (p_{+} - iq_{+})(p_{-} - iq_{-}) \right] \right) \\ \Lambda_{22}^{13} &= \frac{2(\epsilon^2 + d^2)}{F^2 + G^2} \left(\frac{1 - e^{-\gamma(3+P)t}}{3 + F} + \frac{1 - e^{-\gamma(3-P)t}}{3 - F} - 2\operatorname{Rc} \left[\frac{1 - e^{-\gamma(3+G)t}}{3 + iG} \right] \right) \\ \Lambda_{1221}^{13} &= -\frac{\epsilon(\epsilon^2 + d^2)}{F^2 + G^2} \left(\frac{1 - e^{-\gamma(3+P)t}}{3 + F} \operatorname{Rc} \left[\frac{p_{-} - iq_{-}}{\epsilon + id} \right] + \frac{1 - e^{-\gamma(3-P)t}}{3 - F} \operatorname{Rc} \left[\frac{p_{+} + iq_{+}}{\epsilon + id} \right] \\ &- \operatorname{Re} \left[\frac{1 - e^{-\gamma(3+G)t}}{3 + F} \left(\frac{p_{+} - iq_{+}}{\epsilon + id} + \frac{p_{-} - iq_{-}}{2} \right) \right] \right) \\ \Lambda_{11}^{14} &= \frac{\epsilon + id}{4(\epsilon^2 + d^2)(F^2 + G^2)} \left(\frac{1 - e^{-\gamma(3+F)t}}{3 + F} \left(p_{-}^2 + q_{-}^2 \right)(p_{+} - iq_{+}) + \frac{1 - e^{-\gamma(3-F)t}}{3 - F} \operatorname{Re} \left[p_{+}^2 + q_{+}^2 \right)(p_{-} + iq_{-}) - \frac{1 - e^{-\gamma(3+G)t}}{3 + iG} \left(p_{-}^2 + q_{-}^2 \right)(p_{+} - iq_{+}) + \frac{1 - e^{-\gamma(3-F)t}}{3 - iG} \left(p_{+}^2 + q_{+}^2 \right)(p_{-} + iq_{-}) \right) \\ \Lambda_{122}^{14} &= \frac{\epsilon + id}{4(\epsilon^2 + d^2)(F^2 + G^2)} \left(\frac{1 - e^{-\gamma(3+F)t}}{3 + F} - \frac{1 - e^{-\gamma(3-G)t}}{3 - iG} \right) \left(p_{+} - iq_{+} \right) + \frac{1 - e^{-\gamma(3-F)t}}{3 - F} - \frac{1 - e^{-\gamma(3+G)t}}{3 + iG} \right] (p_{-} + iq_{-}) \right) \\ \Lambda_{122}^{14} &= -\frac{\epsilon + id}{2(F^2 + G^2)} \left(\frac{1 - e^{-\gamma(3+F)t}}{3 + F} \operatorname{Re} \left[\frac{p_{-} - iq_{-}}{\epsilon + id} \right] \left(p_{+} - iq_{+} \right) + \frac{1 - e^{-\gamma(3-F)t}}{3 - iG} \operatorname{Re} \left[\frac{p_{+} + iq_{+}}{\epsilon + id} \right] (p_{-} + iq_{-}) \right) \\ - \frac{1 - e^{-\gamma(3+G)t}}{3 + iG} \left(\frac{p_{+} - iq_{+}}{2 + id} \right) \left(p_{-} + iq_{-} \right) - \frac{1 - e^{-\gamma(3-G)t}}{3 - iG} \left(\frac{p_{+} + iq_{+}}{\epsilon + id} \right) \left(p_{-} + iq_{+} \right) \right) \right) \\ \Lambda_{11}^{24} &= \frac{(p_{+}^2 + q_{+}^2)(p_{-}^2 + q_{-}^2)}{(1 - e^{-\gamma(3+F)t}} \operatorname{Re} \left[\frac{p_{-} - iq_{-}}{3 - iG} - \frac{1 - e^{-\gamma(3+G)t}}{3 + iG} \right] \left(p_{+} - iq_{+} \right) + \frac{1 - e^{-\gamma(3-F)t}}{3 - iG} - 2\operatorname{Re} \left[\frac{1 - e^{-\gamma(3+iG)t}}{3 + iG} \left(\frac{p_{+} - iq_{+}}{3 + F} \right) + \frac{1 - e^{-\gamma(3-F)t}}{3 - F} - 2\operatorname{Re} \left[\frac{1 - e^{-\gamma(3+G)t}}{3 + iG} \right] \right) \\ \Lambda_{22}^{24} &= \frac{1}{2(F^2 + G^2)} \left(\frac{1 - e^{-\gamma(3+F)t}}{3 + F} \operatorname{Re} \left[\frac{p_{-} - iq_{-}}{3 - F} - 2\operatorname{R$$

The expressions of I^{\cdots}_{\cdots} in Eq.(18) in main text are

$$\begin{split} \mathcal{I}_{11}^{13} &= -\frac{1}{2(F^2+G^2)} \left(\frac{p_+^2+q_-^2}{(3+F)^2} + \frac{p_+^2+q_+^2}{(3-F)^2} - 2\operatorname{Re} \left[\frac{(p_+-iq_+)(p_--iq_-)}{(3+iG)^2} \right] \right) \\ \mathcal{I}_{122}^{13} &= -\frac{2(\epsilon^2+d^2)}{F^2+G^2} \left[\frac{1}{(3+F)^2} + \frac{1}{(3-F)^2} - \frac{18-2G^2}{(9+G^2)^2} \right] \\ \mathcal{I}_{1221}^{13} &= \frac{\epsilon(\epsilon^2+d^2)}{F^2+G^2} \left(\frac{\operatorname{Re} \left[\frac{p_--iq_-}{\epsilon+id} \right]}{(3+F)^2} + \frac{\operatorname{Re} \left[\frac{p_++iq_+}{\epsilon+id} \right]}{(3-F)^2} - \operatorname{Re} \left[\frac{p_+-iq_+}{\epsilon-id} - \frac{p_--iq_-}{\epsilon+id} \right] \right) \\ \mathcal{I}_{11}^{14} &= -\frac{1}{4(\epsilon-id)(F^2+G^2)} \left[(p_-^2+q_-^2)(p_+-iq_+) \left(\frac{1}{(3+F)^2} - \frac{1}{(3+iG)^2} \right) \right] \\ &+ (p_+^2+q_+^2)(p_-+iq_-) \left(\frac{1}{(3-F)^2} - \frac{1}{(3-iG)^2} \right) \right] \\ \mathcal{I}_{12}^{14} &= -\frac{\epsilon+id}{F^2+G^2} \left[\left(\frac{1}{(3+F)^2} - \frac{1}{(3-iG)^2} \right) (p_+-iq_+) + \left(\frac{1}{(3-F)^2} - \frac{1}{(3+iG)^2} \right) (p_-+iq_-) \right] \\ &- \frac{p_-+iq_-}{(3+iG)^2} \left(\frac{p_+-iq_+}{\epsilon+id} + \frac{p_--iq_-}{\epsilon+id} \right] + \frac{p_-+iq_-}{(3-F)^2} \operatorname{Re} \left[\frac{p_++iq_+}{\epsilon+id} \right] \\ &- \frac{p_-+iq_-}{(3+iG)^2} \left(\frac{p_+-iq_+}{\epsilon+id} + \frac{p_--iq_-}{\epsilon+id} \right) - \frac{p_+-iq_+}{(3-iG)^2} \left(\frac{p_++iq_+}{\epsilon+id} + \frac{p_-+iq_-}{\epsilon-id} \right) \right) \\ \mathcal{I}_{11}^{24} &= - \frac{(p_+^2+q_+^2)(p_-^2+q_-^2)}{(3+G)^2} \left[\frac{1}{(3+F)^2} + \frac{1}{(3-F)^2} - \frac{18-2G^2}{(9+G^2)^2} \right] \\ \mathcal{I}_{22}^{24} &= -\frac{1}{2(F^2+G^2)} \left(\frac{p_+^2+q_+^2}{(3+F)^2} + \frac{p_-^2+q_-^2}{(3-F)^2} - 2\operatorname{Re} \left[\frac{(p_++iq_+)(p_-+iq_-)}{(3+iG)^2} \right] \right) \\ \mathcal{I}_{22}^{24} &= -\frac{1}{2(F^2+G^2)} \left(\frac{p_+^2+q_+^2}{(3+F)^2} + \frac{p_-^2+q_-^2}{(3-F)^2} - 2\operatorname{Re} \left[\frac{(p_++iq_+)(p_-+iq_-)}{(3+iG)^2} \right] \right) \\ \mathcal{I}_{22}^{24} &= -\frac{1}{2(F^2+G^2)} \left(\frac{p_+^2+q_+^2}{(3+F)^2} + \frac{p_-^2+q_-^2}{(3-F)^2} - 2\operatorname{Re} \left[\frac{(p_++iq_+)(p_-+iq_-)}{(3+iG)^2} \right] \right) \\ \mathcal{I}_{22}^{24} &= -\frac{1}{2(F^2+G^2)} \left(\frac{p_+^2+q_+^2}{(3+F)^2} \operatorname{Re} \left[\frac{p_--iq_-}{(a+id_-)} \right] + \frac{p_-^2+q_-^2}{(3-F)^2} \operatorname{Re} \left[\frac{p_++iq_+}{(a+id_-)} \right] \\ -\operatorname{Re} \left[\frac{(p_++iq_+)(p_-+iq_-)}{(3+iG)^2} \left(\frac{(p_+-iq_+)}{(3+iG)^2} + \frac{p_--iq_-}{(3+iG)^2} \right] \right) \end{aligned}$$